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In monograph are presented new methods of calculation of
electzomagnetic fields with the help of simulation and electronic
computers, are described principles of action and construction
of ;odels of separate most complicated mathematical operations,
are given methods of design of specialized analog computeis
for calculation of electromagnetic fields. In last chapter is
presented theory of models of space static fields with optimum
structure of boundary. Are given examples of calculation
and construction of models with minimumly distorting boundary
and new methods of simulation.

Book contains -sically original material which it is possible
to use when designing new types of electromagnetic devices.

it is intended for scientists and engineers occupied with
calculationc of electromagnetic fields and also developing
and designing of new types of electro- and radiotechnical
devices.

Editor-in-Chief
Associate Member of Ukranian
Academy of Sciences
G. Ye. Pukhov
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I

PREFACE

Calculation of electromagnetic fields in linear media usually reduces to

solution of boundary value problems for partial differential equations of elliptic

type. Analytic solution of these problems as a rule is very complicated and is

labor-consuming. Technology presents ever more stringent requirements on speed

and accuracy of calculation of fields. Distribution of field determines all

properties and characteristics of any electromagnetic mechanism, therefore creation

of new electrical machine or installation is inconceivably without preliminary

calculation and analysis of picture of electromagnetic field in it. Earlier

during designing of one or another electromagnetic mechanism it was possible to

be satisfied with qualitative character of distribution of field and for calculation

to use set of experimentally obtained relationships very approximazely reflecting

essence of phenomenon. At present the power of electromagnetic devices has

grown so much that an error during their design of several percents In determination

of field leads to impermissible losses of energy in the prepared device or to the

device not satisfying its technical requirements.

These circumstances cause necessity of developing effective methods of

calculation of electromagnetic fields based on strict mathematical relationships

and creation of specialized computers to sufficiently accurately and rapidly

realizing these methods. Application of universal computers discrete action for

calculation of fields frequently turns out to be unjustified since it requires great

expenditure of time on programming of every concrete problem and large machint:

time expended on its solution. For complicated forms of investigated regions

which usually are met in 'ractical problems, the necessary accuracy of solution

FTD-T-66-86 I



is not ensured because of the impossibility to operate with large numbers of

initial data with a limited fast store in the machine.

The best solution would be simulation of the calculated f.eld by a field of

another physical nature in an analog model. However there exist fields for

simulation of which it is not possible to construct analog model. Besides, even

for those fields which it is possible to mode], to construct model ensuring

assigned accuracy is costly and complicated. Expenditure of labor on manufacture

of model would be justified if it in a certain sense was universal, i.e., allowed

simple change of circuit of region of investigated field and boundary conditiors

on it and, due to this, could be used for solution of many practical prob±i'1s of the

same kind. However, to construct such a model has not yet been managed.

In connection with this there is a rational solution of problem of calculation

of a field by complex means, i.e., analytic calculation should be combined with

simulation of separate, most complicated and labor-consuming operations. For

this is required to construct algorithm of solution of problem such that it

consists of small number of well modeled mathematical operations common to the

given class of problems, combined with simple and efficient arithmetical

calculations. Similar structures of electromagnetic fields different in nature

permits constructing an algorithm satisfying these requirements. Models of

separate operations entering into it can be made sufficiently accurate and either

universal, in the sense of simplicity of change of boundary conditions, or simple

and cheap.

Advantage of proposed algorithmic method of simulation is possibility of

appraisal of upper limit or methodical error of obtained solution with limitations,

put on boundary conditions, satisfied in the majority of practical cases. This

maker solution of problem with the help of simulation not less reliable then

wnen using direct analytic methods.

At present has appeared possibility of creating complex of modelling devices

for calculation of electromagnetic plane-paralLel fielas. Such a complex can

be considered as a specialized computer whose clement are adjusted for simulation

of limited number of complicated mathematical operations. From sequence of

these operations it is possible to construct algorithm of solution of majority

FTD-MT-66-86



of problems of calculation of plane-parrallel electromagnetic fields met in

practice.

In book are presented element of theory of devices simulating mathematical

operations encountered during calculation of fields, the construction and principle

of operation of these devices are described and algorithms are given of solution

of separate problems by calculation of fields, adjusted for realization of them

with the help of analog computers ana on universal computers.

Analytic methods of calculation of volume fields are developed considerably

worse than methods of calculation of flat fields. Up to now to the most effective

means of determination of space static fields has been their simulation in a

conducting medium or in a volume grid by a direct current fie!d. However during

simulation also appear difficulties connected with unlimited extent of the field.

It is impossible to present an infinite model. Boundary of model, being

interface of two different media, distorts modelled field. The error appearing

here frequently attains an inadmissible magnitude. It is of great interest

to construct a model in which boundary would not introduce distortions.

it is known that it i.3 impossible to construct a model of volume field in

which completely absent will be distDrtions introduced by its boundary without

application of active element, of adjusted every time for maintainance of concrete

boundary conditions. However if one were to definitely select the form and

structure of boundary of model then error introduced by boundary can be made

small, independently of distribution of sources of mode]led field. A theory of

models for investigation of space fields possessing such properties is discussed

in the last chapter of this book. In it is considered how to determine form

and structure of boundary of model ensuring expedient minimum of distortions

of modelled field in assigned region, independent of location of field sources

and properties of medium in which it is modelled. On the basis of solution of

this problem was developed a new analog computer for calculation and design of

optimum electro-protection of the underground pipeline or cable network from

soil corrosion and from corrosion caused by stray currents of electrified

railroads, a new method of simulation of volume fields of great extent by sections

was presented, attenuatcrs for %.±ume grids and eilctrolytic baths was designed.
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BooX is intended for engineers-electricians therefore authc" strive&, with

ideas lyin- at ba~ls of analytic methods of calculation of fields, to give physical

or geometric interpretation. With this goal in first chapter are given necessary

relationships from field theory and the connection is shown between plane-parallel

electromagnetic fields and the theory of analytic functions of complex variable.
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CHAPTER I

ANALYTIC FUNCTIONS AND FIAT FIELD

§ 1. Harmonic Functions on Plane

Potential of electrostatic field of charges distributed in space satisfies the

Poisson equation

, V e 1)

Here U - potential; p - volume density of charge; s - dielectric constant of

medium.

For plane-parallel field this relationship in right-angle coordinates is

recorded so:

-1 # (1.2)

where T - limit of relation of magnitude of charge in volume of filament with

cross section AS and unit length to area of cross section AS as 1S-0 In that

part of space where charges are lacking (T = 0) potential satisfies the Laplace

equation

A --! + = 0. i3

A function satisfying the Laplace equation Is called harmonic. Since subsequently

we wii. frequently need to deal with harmonious functions, let us consider their

characteristic properties.

A harmonic function can have neither a maximum nor a minimum at any of the

internal points of the region since for an absolute maxirum or minimum of a
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harmonic function in any point it iu necessary tnat all its partial derivatives

of second order be, at t.,is point, either negative only or positive only and this

is incompatible with tho Laplace equation.

It follows from this that potential - harmonic function - can take a maximnum

and minimum value only at the boundar, of the region (fcr instance on surface of

charged conductors) with the exception of that case when it is constant in the

entire region (e.g., inside a conductor).

Let us write the Laplace equation on a plane in polar coordinates

A= + - .,.+,M.0. (1..4)

Here , - "?•-; *,arctg -

Let us select some point on the plane as the origin of coordinates and plot a

circle of radius R with its center at this point (Fig. 1). Since potential is e

single-valued function, on this circle Mr,. 1)-U(,00+2h.) (k - whole number),

i.e., potential is a periodic function of e with a period of 23. This permits

representing it in the form of a Fourier series whose coefficients will be functions

only of the radius of the circle.

u(,. ) - R.(r) + [R.,) cos.n9 ,)+S. . (). 5)

Let us find these functions. We differentiate expression (1.5) and substitute in

equation (1.4):

+ i .mr4 cos #6 + .*sin mOL

+-- Rosat + S. sin #L

al, ~'49jftcosii+S~sinnj

AU-r. +R+ + R.--R. Cosn9+

+S.• S.) sine 0.=O (1.6)



This equality will be satisfied for any e only under

the condition that all amplitudes of harmonics equal

zero, i.e., if

* I Jr+7 !.-,' R. -0.

Fig. 1. T + SR,-!0 R. -0.

Solving these equations we find an expression for the coefficients of series (1.5).

We set R0 = y, then R0  r and
_.9 dg dr_ 4

hence - rR-n. r_

or dR, B ,,

and (1.8)
- $ + B. In r.

Multiplying the second of equations (1.7) by 22 (r > 0) we reduce it co the

well-known Euler equation

OR + r - n,•. =0.

Let us seek a solution in the form Rn(r) =.rk. Placing this solution in the

equation we obtain

k( - I)r + •-, =0.
kor, e llimnating r

Consequently

R6,- 0 + Br(1.9)

analogously
S.4) - Ce + Dr--. (1.10)

Placing these values In series (1.5) we have

u(,,)-•, + 8.11,. + (Aor --r 8.r-1CoSnS+ (1.11)
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+ ( Cr + Dr--) •.In9 C(dont Id)

Thus potential of plane-parallel electrostatic field in uniform isotrop!t

dielectric can be represented in the form of series (I.lI).

Let us assume that origin of coordinates is selected at point of field M.

Potential at this point is limited and r = 0, therefore we should have

8, - B. = D. - O. U(M.t)•- t.O) -•4

Potential in neighborhood of point M will be in the form of series

V(V.e).- U(A) + E (As Cos no +C., sin HS). (1.12)

Let us show now that the value of the harmonic function - potential - at the

center of the circle is equal to the mean value on the circumference. Let us

superimpose the origin of coordinates with the center of the circle (point M).

On circumference of radius p we have

fV(Q@A-g f[UM) 1 (A4rcotni+

+ CAN Sir) do - U01).

or

-IM j1JQ )l- /, JL(,),. (1.13)

§ 2. Functions of Flux and Complex Potential

in a Flat Field

Let us consider a field of two parallel charged cylinders (Fig. 2). Surfaces

of equal potential in it are cylindrical with generatrices parallel to the cylinder

axes (axis oz). Lines of force also form cylindrical surfaces. Flux T through

any cylindrical surface, path of which coincides with lines of force, obviously is

equal to zero. At every point on such a surface the vector E is tangent to it.

Let us select one of the surfaces, formed by a set of force ltnes, as the initial

surface - the boundary of a tube of flux. Let us agree to measure flux

counterclockwise from it. Let us plot through point M(x, y) a line of force and

a cylindrical surface corresponding to it. The magnitude of flux in the tube

formed by this surface and the initial surface will depend on coordinates of point

M(x, y). Flux occurring at a urit depth of the tube in the direction of axis

8



of conductor we will call the function of flux and will designate by V(x, y).

The function of flux at point M(x, y) is an electrostatic flux the depth of which

is equal to one while the shores are the initial line of force and the line of

force passing through point M. Consequently, at any point lying on a line of

force, the function of flux is identical and the equation of the line of force

may be written:
1. V,= Iacons

During bypass around a charged conductor with charge T per unit length, the

function of flux will obtain an increase equal, according to Gaussian theory, to

. Consequently in this case the function of flux is multivalued. Let us findS

the connection between the function of flux V and potential U. Potential

decreases in the direction of vector E, therefore

Ea &/ E,.-A11  (2.1)

Let us consider two infinitely close force lines V = V1 and V = V1 + dV

(Fig. 3). The flux dV between these lines equals

dVW - ELx - Edy.

since the function of flux decreases during motion in the positive direction

along the ox axis. These relationships yield

Es d(2.2)

Comparing expressions (2.1) and (2.2) we obtain

Relationships (2.3) are called the Cauchy-Riemann conditions. By differentiating

conditions (2.3) it is easy to show that U and V satisfy the Laplace equation

•*-- " 3'U @

The two functions satisfying the Cauchy-Riemann conditions are called conjugate

harmonic functions. Conditions (2.3) are conditions of orthogonality of curves

U = const and V = const.

9
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Fig, 2. Fig. 3.

i:• For depicting a plane-parallel field graphically it is agreed to plot

• equipotential and fore lines in such manner so that during traneition from any

linle to a neighboring one the same increase of potential or function of flux is

obtained. Equations U(x, y) = const and V(x, y) = const determine two families

F• curves crossing everywhere at right angles, i.e., forming in plane xoy an orthogonal

-L• grid. As can be seen from the definition of functions of flux and potential,

measurement of their magnitudes (or their change) in the field is rade in two

mutually perpendicular directions: V is measured along lines of equal potential

•= (U = const), U along lines of force (V = const), as the coordinates x and y are

measured on the plane. Every point in the field can be characterized by a pair

coordinates x and y and pair of magnitudes V and 'U in it. Similarly, both a

point on the plane can be defined by one complex coordinate z = x + iy, and a

point in the electrostatic field can be defined by one complex value W = V + WU

called the complex potential of the electrostatic field.

Let us demonstrate that the complex potential W may be considered as a

differentiable function of one complex coordinate of the point z = x + iy, similar

to a function in one real variable. For this it is sufficient to show that the
d';

II doriaieT depictngt aeen plne-pralel direldgrpioall odifentisagreed tof coplot

pline to) aLeighboringuoe thet sirecino increase Af poeniaorfnctideon odiflctisn

grid. Ase cani be. seenfrmtedfnto ofuntosoflxadpeti,

iedrvtvswtrepctotomutually perpendicular directions: arsmasrdalneinso equal.ptnta

~e measured nthepatinnobe. Every e point in the fried rany biehrcteo ri zedb a pair

corints ndyan ai f aniuesVan i t.Smialy1ot0



SdldWdW
f. _dg , -• (•.•.ca • i (2.5)

" *-'(coo#+ i sinsO) W "0 di '

i.e., the derivative with respect to any direction ne on the complex plane is

equal to the drivative along the ox axis. It follows from this that complex

potential W = V + iU may be considered as differentiable function of one complex

coordinate z = x + iy of the joint in the plane. Such a function of complex

variable z is called holomorphic or analytic.

If the complex potential of electrostatic field is known then it is easy to

construct the field pattern and to determine all of the interesting quantities.

Lines of force are plotted according to the equation

ReIV()I = V(x.y)- co='t;

equipotential lines according to the equation

IlW(Z)l - U(X. Y) - const.

Field strnegth is found from the formulas

E-1 , - -+--.(2.6)

Consequently calculation of a flat field reduces to finding complex potential W(z).

§ 3. Plane-Parallel Electrostatic Field

If it is iecessary to find the field of a system of parallel charged conductors

separated by distances considerably exceeding the dimensions of their cross sections

then in Approximation the conductors can be replaced by infinitely thin filaments

and the field of the system of charged filaments considered. The complex potential

of a field of charged filaments with charges -k located at points z Ok will be

defined thus:

o(,-- in(z- ) (3.1+)

If the field close to the surface of conductors at distances commensurable

with dimensions of cross sections is ansidered such replacement Is not permissible.

i1
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Let us formulate the nroblem of c-lcul•-÷o^ of the fild ih this case. The

distribution of charges on the surface of the conductors as a rule is unknowh.

Only potentials of the conductors, the shapes of their cross sections and their

mutual location are known. Outside the wire there is no charge and the potential

satisfies the Laplace equation, on the surface of the conductors (contours of

cross sections of cylinders Lk) potential takes the assigned values ck. Thus

calculation of the field reduces to a solution of the following problem known as

the Dirichlet problem: to find the harmonic function - potential U(x, y) - in

a multiply connected region, taking constant values ck on each of the curves Lk

of the corresponding contour.

The case of charged filaments located near uncharged cylinders is of interest.

It is possible to consider the field as the result of superposition of two fields.

Sources of one are charges of the filament, sources of the other, charges induced

on conductors, The potential of the field of induced charges q(x, y) can be

found by solution of the boundary value problem. Let us formulate it.

On contours of the cross sections of cylinders Lk the electrical potential U

of the resultant field takes constant values ck which are not previously known

814u'L + yiL, + ()4 f)

whence
%) - &- UVA (3.2)

t k - point of contour Lk-

Inasmuch as the potential on eat.h of circuits contains an u-nknown constant

ck addtional conditions are required for a unique solution to the problem. Let

us find these. The complex potential of the field of induced charges n(z) is a

holomorphic function outside of the conductors:

Q0 YVx.A + it(x.). (3.3)

Here 1(x, y) is a function of the flux of the induced charge field conjugate

to the electrical potential q(px, jr) By the Gauss theorem for any circuit Lk

we have

di a- d 0 34

-4



such that there are no free charges on the cylinders. Consequently the function

of flux T Just as the potential T are single-valued functions. The complex

potential Q(z) will also be single-valued. This is therefore, the additional

condition.

Thus the problem of calculating the field of induced charges reduces to wbat

is known in mathematics as the "modified Dirichlet problem" as follows: to find

analytical function (complex potential), holomorphic and single-valued in multiply-

connected region, if on each of curves k comprising the contour, the imaginary

part of this function q(t) is given with an accuracy of the constant component

ck [151.

In a plane-parallel field it is necessary to consider the possibility of an

irregular solution resulting from the abstraction which we introduce in replacing

the real field with a flat one. If according to the conditions of the problem

* the total charge of the conductors located on a unit of their length differs from

zero then the notential of the field at infinity increases without limit and the

solution becomes irregular. Actually the potential cannot increase without limit

with distance from the charged bodies. Irregularity is obtained as a result of

the unlimited length of the cylinders which we admit by substituting a plane-parallel

field.

§ 4. Plane-Parallel M~netic Field

The field of a system of threads of curient. Complex potential Wm(z) of the

field of a rectilinear filament of current i in a uniform tsctropic medium with

permeability 4 has the form

Waft)- V,4z-0p+10-0.0x --t I hW-4) +c. (4.1)

Here z 0 = x0 + iy0 - coordinate of point in which is located filament; Vm - function

of magnetic flux; Um - scalar magnetic potential; c - complex constant: c = c. + ic 2 .

Assuming z - z = ret, we obtain

"I~
• nmIn, + 1 -

( tl_ 0c~*(.2)

13



whence
S+,. (4.3)

The eqtation of lVnes oi force is V. const or r = const. Lines of foice constitute

concentric circles with center at point zO. The equation of lines of equal

potential iq UM = const or e = const. Lines of equal potential constitute rays

emminating from point zO. As r -. 0 and r - co, i.e., upon approach to points z0

and an the function of magnetic flux ir:reases without limit, the complex potential

at these points has logarithmic peculiarities.

Considering cI = 0, we obtain on circumference r = i, Vm = 0, i.e., circum-

ference r = I is an initial force line. Assuming c 2 = 0 we obtain on straight

line e = 0, UM = 0, i.e., ray e = 0 is a line of zero potential.

14 't is required to find the field of a system of parallel wires with currents,

where the distance between wires considerably exceeds the limensions of their cross

sections, then in approximation the wire can be replaced by infinitely thin

filaments located at the ccnters of gravity of the cross

sections and the field of this system of filaments of

L current may then be considered. Such a replacement will

not leAd to essential errors ±f one limits consideration

3 to the field at a region e~tternal with respect to the circles

-" with centers at points of location of the filament3 and radii

Fig. •. equal to distances from the filament to the most remote

point of the cross section of its wire.

The field of a systlem of n parallel filaments with currents I located in

points z~k we find by applying the method of superposition

(r.).4)

A magnetic field outside wires of any cross section with currents Ik. Let

us consider a magnetic field of current I flowing in a long rectilinear wire of

cross section S (Fig. h). Let us place the origin of coordinates at the center

of gravity of the cross section. Wc then divide the wire into infinitely fine

parallel filaments of cross section dS with coordinates z. = x 0 + iyO. Every such

14



filament is a linear conductor with current di =dS, the current density 5 being

constant. The component of complex potential at point z x + iy from filament

with current di = 5dS will be

6-nzz)S (4.5)

Summing the components of complex potential from all filaments over cross section

S of the wire we obt&4n a complex potential Wm at point z:

S

During integration over dS the variable is Zo, therefore

6 In zd s 6 SIn z -! I In z

and

11.) In:- In(4.6%

In this expreseion under the double integral stand the analytic function

outside of cross section S,

We tahe the Green formula (22] and demonstrate that the complex integral over area

S of analytic function f(zo) can be replaced by complex integral over contour L

uaeliniatlng this area. Let us calculate the integral S;(:)dS. where I(z)=1'(x. y+iU(x.p).

Let us put set I(z -9=Q' (z) = v(x.) + ie(x.y) and consequently

I V) + - -- + +-ax a

15•



1* )S -d P,-*--( &d d

V+ Nx4 X =Ii m (x.yg)dx--fe(x. q ,dx
-. (.If•, +X -- ' (.,,1- if (dx.,•.

Altering the order of integration we obtain

I Jds A (V + iUWx d 4 dy xh +

+1 ~ 'j #vZJd +txv)Xv +

A(4.8)

m(v + it) dy D~dy. (48

Combining the results obtained and bisecting we find [24]

ffjldm idx + dy) 0(zdz. (4.9)

or

5I~zdS- ~I* IwZ16id (4.10)

Applying this formula for calcil&.+ing the complex potential of the magnetic

field of a wire with current, we obtain

-d,.-+:c., ,(4.11)-.,, In, ,. - . In - d)t.]d-. + c

But

and

OM nziA (-l I-!)4d;e (4.12)

2X 4Xf ;



When the field is defined for a region where ',>'Z is the maximum distance from

the center ,f gravity to the boundary of the wire cross section, we have

a-I

whence

V..(Z)= [1,, (4-:~~nn I~-d~J 13)

The field of a sy3tem of wires of different cross section can be determined by

applying the method of superposition.

Field of current carrying wires located near ferromagnetic cylinders. As in

the electrostatic problem, the field may be represented in the form of a super-

positioning of two fields. The sources of one are currents in wires, source of

the others is magnetization of the ferromagnetic cylinders. The potential of the

field of currents flowing in the wire! can be calculated by the formulas of the

preceding paragraph. The field of magnetization can be found by solving the

boundary value problem. Let us formulate it. Sources of the magnetization field

- elementary currents of iron - are inside cross sections of the ferromagnetic

bodies. Therefore field of magnetization outside these sections can be described

by a scalar potential function q.(x. y). satisfying the Laplace equation

+. =0. (4.14)

If the distribution of potential over the contour of cross sections of the

ferromagnetic bodies were known then the potential I.x.y) in all regions outside

these sections would be uniquely defined. The distribution of potential i'd') over

the contour of cross sections of ferromagnetic bodies can be found with sufficient

accuracy and simplicity only when it is previously known that induction within

2the ferromagnetic bodies does not exceed I Wb/m2. Here the permeability of iron

is everywhere much greater than the permeability of air and it is possible to set

17



Pa- N. If on the contour there are no currents from external sources then

H�- H,. where If,..,..,. and H,- 8,1- are tangential components of full intensity

on the contour of ferromagnetic bodies in iron and air respectively. On the other

hand, for pm-w, and a limited induction in iron ,,II,a.=O. whence

H, - 0 (4.15)

Taking into consideration that the resultant component of intensity 1 consists of

the intensity H6 caused by the field of eddy currents in the wires and H.. caused

by the intensity of magnetization, we obtain ff+H,-O. or finally

H,--.H,. (4.16)

i.e., on contour of ferromagnetic bodies the tangential component of intensity H.

of the field of intensity of magnetization is equal and opposite to the tangential

component Hst of the field of currents in the wires.

Integrating H, over the contour we obtain the distribution by potential of

the field of magnetization q.((). The result of such integration with an accuracy

to the constant will give a value of potential at a point on the contour t in the

form of the imaginary part of a complex potential W It) of the magnetic field of
-.

%

currents in the wires

where ck is an unknown constant which differs for each contour of the cross section.

As can be seen from this expression, the distribution of potential vJ() can be

found with an accuracy to the constants Ck, therefore for unique solution of the

problem additional conditions are necessary. Let us clarify them.

The field of magnetization intensity outsidc the cross sections of cylinders

can be characterized by complex potential

W .. -44 + • (4.1•8)

where V. - function of flux conjugate to the scalar magnetic potential *.

Applying the total current law and considering that in any problem the total

current through a cross section normal to the axes of the wires is equal to zero



for any cross section contour of the ferromagnetic body, we can write

HA df- 0.(4. ic)

Consequently the scalar potential of the magnetization field outside cross sections

of the ferromagnetic bodies is a single-valued function. Analogously, from the

principle of continuity of magnetic lines for any contour L we have

df ds f - 00 (4.20)

i.e., tqe function of flux Vy of the magnetization field is also a single-valued

function. Consequently the complex potential F.() will also be single-valued.

Thus the problem of calculating the magnetization field in a multicoupled region

beyond the cross section of ferromagnetic bodies reduces to the modified Dirichlet

problem (28]:

"To find an analytic function (complex magnetic potential), nolomorphic and

single-valued, in a multiply connected region if on each of the curves Lk comprising

the contour the imaginary part of this function 9,U) is given with an accuracy to

the constant ck."

§ 5. Conformal Transformations

Let us consider complex potential W = V + iU as the complex coordinate of a

point on the new plane (W) on which, along the real axis, are plotted values of

the function of flux V, and along the imaginary axis values of potential U. On

plane (W) points which earlier filled region D of the field (on plane Z), fill a

new region DI, differing in general from region D. We shall consider region DI

as a geometric transformation of region D, i.e., a transformation of region D

from plane (Z) to region D, of plane (W).

As we clarified earlier, harmonic functions V and U can take maximum and

minimum values only on circuit the contour [boundary] of the region just as the

coordinates x an'4 y. Therefore points of the contour of region D during transforma-

tion can cross only to points of the region Di contour, internal points convert

to internal points, and the transformation will be single-valued.
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., IW tLet us consider the region D included between

"]VF two equipotential surfaces of conductors and two

b-_ force lines (Fig. 5). Let us assume that U1 = 0,

U-0 b% U2 = N, V, = 0 and V2 = K. On plane (W) region

Fig. 5. D will convert to a rectangle with sides U, = 0,

V -- O, U2 = N, V2 - K. In reality all points

of line ab have values of the flux function Vi = 0, the potential on this line

when going from a to b changes from U2 = N to U, = 0, all points of line bc have a

potential U, = 0, functions of flux when going from b to c change from V, = 0 to

V2 = K, etc. Consequently, the boundary of region D on plane (Z) will convert

to the outlJ e of a rectangle on the plane (W). All internal points of region D

"have values of potential greater than zero and less than N whole values of function

of flux ic greater than zero and less than K, consequently, on plane (W) they also

will be internal points of rectangle D.. Lines of force of plane (Z) convert to

straight lines, parallel to the ordinates axis on plane (W), lines of equal poten-

tial to straight lines parallel to the axis of abscissas. Curvilinear squares

formed by the intersection of lines of force and equipotential lines on the plane

(Z) will be converted to rectilinear Equares on plane (W). But then in the

rectangle on the plane (W) the lines x = const and y = const will be curves. Like

lines U = const and V = const of plane (Z), they will form an orthogonal grid

since on plane (W) x and y will be conjugate harmonic functions of the coordinates

V and U. For them the Cauchy-Riemann conditions and Laplace equation also hold:

ox a m a, 0V (5.1)

Thus complex potential of electrostatic field W(z) = V(x, y) + iU(x, y) - an

analytic function of a complex variable - accomplishes a geometric transformation

of region D of plane (Z) into a rectangle of plane (W). This transformation has

one characteristic peculiarity. Infinitesimal sections of the transformed region

retains its form after transformation. This infinitesimal curvilinear squares

remain squares after transformation. Therefore such a transformation is called

conformal.

Let us now clarify what the complex potential W(z) will convert the entire
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part of plane (Z), external with respect to conductors, into. Complex potential

W = V + iU outside the conductors is an analytic function whose imaginary part

takes the constant values U = 0 and U = N on cross sectional contours L1 and L2

of the conductors. Let us consider the properties of this function. From the

porperty of a harmonic function to take a maximum or minimum value on tfe contour

of the region it follows that on Li values U = N are maximum values in the region,

on L2 , U = 0 are minimum values. Therefore the sign of the normal derivative a,

is the same in any point of contour L1 and since •!= LY we have
On Ot

t = di = C (by theorem of Gauss). (5.2)

Thus the real part of function W(z) during a circuit along the contour LI

undergoes an increase equal to I, and consequently, the value of the real part of

V at any point z of the region LL infinitely defined and equal to i'+ k (k - an
£

integer) which means that W(z)=V t'-- +iU is also infinitely defined, its values£

differing from one another by multiples of

In order to avoid ambiguity we will proceed in the following way. Let us

imagine a surface in the form of a spiral with an infinite number of turns of

embracing each contour LI and L,. such that every turn constitutes a sheet coinciding

with a region outside Li and L2 . We will consider that the region of definition

of W(z) is such a surface. We will isolate the line Vt=O(=1.!) and segment this

line as a result of segmenting the entire infinite-sheet surface will break down

into separate sheets. On plane (W) every such sheet will correspond to a rectangle

enclosed between straight lines U = 0, U = N, V = * and '. i

The entire infinite-sheet surface will correspond to an infinite band between

straight lines U = 0 and U = N. Taking as the domain of definition of function

W(z) that infinite-sheet surface called the Riemannian surface, we thereby obtain

a one-to-one correspondence between points on different sheets of the Riemannian

surface and points of the infinite band on plane (W). The function W(z) as where

it is looked on as a spiral of the Riemannian surface conformaily depicting it

on an infinite band. The inverse function z(W) will be single-valued since every

value of W on the band corresponds to only one value z on the plane (Z).
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Let us consider some examples.

Complex potential of a field of charged filament. Expression for complex

potential will be written thus:

3'arn - O(awg i in__7_V

z (I + (5.3)

Lines of equal potential Inr-eonst are circles with centers at the crigin of

coordinates, force lines 0 = const are rays extending from the origin of coordinatos.

Function V(a)-- 2 .tnz goes to infinity at two points: for z = 0 and z = o, i.e.,

has logarithmic peculiarities in these points. The entire plane (Z), with the

exception of these points, conformally maps function W(z) on an infinite band of

width _ from U = -wo (r = 0D) to U = aD (r =0). This function maps a circle of

radius r on a semiband of width from U = to V= Inr.

The part of the plane bounded by two rays (angle between them equal to 8),

emanating from point z = 0 is also mapped by the function W(z) on an infinite

band of width ". The domain of definition of W(z) is an infinite-sheet
2Za

Riemannian surface each sheet of which coincides with the entire plane (Z).

Complex potential field of two charged filaments. Let us assume a distance

between filaments of 2b. Applying the superposition principle we find

We take 1,---t, za---b.z, -b. Then

WF,, .. (1,n+b•, -• •+•(5.4)

We designate 5+b.,d .ag',.. then

V.-,0Lj+es U in +C, (5.5)

Setting c 2 = 0 we obtain U = 0 for rI = r 2 , i.e., the axis of ordinates will be

a line of equal potential. Setting c, = 0 we obtain V = 0 for 02 = e., i.e.,
the initial line of force will be a segment of the axis of abscissas going out from

the filaments to infinity on both sides. The equation of the lines of force



e2 - I= const is the equation of a circle with its center on the oy axis,

passing through the filaments. The equation of equipotentials is also the

equation of a circle with its center on the ox axis

V(x.V) In, mcnst or (- + W + Co.

Hence

(z- 1+ c (5.6)

coordinates of the center of the circle

I. +C1 (5.7)
T-1-_i b, . Y, o.

radius

(5.8)

The function 3'(z)= L~Inz+b goes infinity at two points: at
2Te z-b

z=bF(b)=-ou and z=-bW(-b)=ho. At these points the function has logarithmic

characteristics. The entire plane (Z), with the exception of singular points,

function W(z) conformally maps on an infinite band of width - from U = -m to

U = C.

The circle of radius R with its center at the point (xo, yo) is mapped by

this function on the semlband from U = -co to U- The circle

of radius b with center at the origin of coordinates is mapped by the function

W(z) on an infinite band of width T- from U = -co to U = co.
2.-A

§ 6. Invariance of the Laplace Equation DurJng
Conformal Transformation

Let us consider an important property of conformal transformation of regions.

Let us show what if in region D is assigned a harmonic function T(x, y) and the

region is conformally transformed to another region DI then if at points D,

corresponding during trans rmation to points D, values of the function are

maintained as before, the function 9,(V, U) in region Di remains harmonic. In



othAr w.ord the Lplace equation will not be changed during conformal transforma-

tion of the region ([21.

Let u3 assume that in region D on plane (Z) there is distributed a potential

P(x, y) which is a harmonic function of coordinates x, y of points in the region.

Let us transform region D conformally into some other region D. with the help

of analytic function w = u + iv. On plane (W) the coordinates of any point will

be u and v which on plane (Z) were conjugate harmonic functions of coordinates

x and y and satisfied there the Cauchy-Riemann conditions

S(6.1)

Let us substitute coordinates in the Laplace equation, i.e., clarify what equation

will satisfy function y after conformal transformation of the region. On plane

(Z) we had

+ 0 (6.2)0+- -e

Converting to new coordinates u and v we obtain:

q aut+a a+-; a -,s +-- ey

+ r. ) + +
(W) W7x-, W We;•

+ •-!n..-+ -.

Combinirg. second derivatives we obtain

+ +-.- -+ . (6..A)



- -

Thus, after conformal transformation of region D to region D. the notential

remains a harmonic function of the new coordinates u and v. Conformal transforma-

tion does not alter the Laplace equation. This property of conformal transformation

permits calculation of a field in any complex region leads to calculation of a

field in a simple region where the expression for potential is known.

§ 7. Conformal Transformation of a Circle of Radius R
to a Circle of the S;am Radius With

"Translation of Poin+ z-rvO
to the Center of Circle

To obtain a transformation of a function we use the pictures of fields of

one and two charged filaments considered earlier. The complex potential of the

field of one charged filament with charge t-- 2ae

maps a circle ''<R on an infinite semiband of width 27T. In this case the center

of the circle C = 0 passes to point W = -co, circle '.=R to a segment of the

straight line U = ln R. The complex potential of a field of two charged filaments

also depicts a circle IzW4R. limited by equipotential U = const on an infinite

semiband; translates point z = z 0 , in which is located the filament, to point

W = -a and circle z =R to a segment of straight line U = const (Fig. 6).

Applying consecutively these transformations

V •. we transform circle * .R to a semiband and

then the semiband again to circle z ;R. but

in such a manner that the center of the first

7 v b 21 circle t = 0 falls on the point z 0 of the second

circle.
Fig. 6.

Let us assume that at points z.-= r,* and

z,+ 2bes are placed charged filaments whose linear charge densities equal t,= 2 -z

and %-,--2n (Fig. 6). The complex potential of field of these charges will be:

WOz) - V+ W -n'-to (7.2)

From the picture of the field of twc charged filaments considered earlier we have



I? b + b4+b- _7b-

whence
R . _ __ __ __ __

_- , _ -+_ (7.3)

A#
.+ 2b - ._2b r+ Saur, O 2b.

Consequently, so that o'n circle of radius R the potential U will be constant, it
if-o'

Ix necessary that tie equality 2& m At the point s-Re"

Re', -,.e"--,

R
r6R-,o.----

.. _ ,(R ,0) ,.(7.4)

Consequtently on the circle fzf-R , potential U-I.n. Thus, the function

"re
,,In (z- to _.flnelf, ,.(Z--4! (7.5)

conformally maps circle I:' <R. onto an infinite band of width 27r on plane (W),

point z0 translating to point W = -c and circumference Ii -R to segment U,=- In-,

The function Ir,"Ia , conformally maps the circle ' cR onto an infinite semiband

of width 2r and translates point C = 0 into point W1 = -c aad circumference V; R

into segment U2 = in R, We superimpose both sxinbands on plane (W) in such a

manner that line U,-InA* and U = in R coincided. For this semiband, on which

the function V,-ilntt maps the circle . , we shift downward a distance

U2 - Ui, transferring the origin of coordinates. Here we obtain

---.. F .+ 1-- hn --i~nR+i�~~j - fIn -4 C. (7.6)

Equating now both expression for W, we find the sought transformation

i mo ' ,(' -`-,) - i-- inA . (7.7)
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whence

CAM £ (7.8)

§ 8. Solution of the Dirichlet Problem for tr.e Circle.
Integral of Poisson

The value of a harmonic function at the center of a circle is equal to its

mean value or. the circumference i13)

V(o) = &#(R, ), dtl. (8.1I)

Conformally mapping a circle of radius R onto a circle of the same radius in such

a manner so that point z0 is transfered to the center of the circle ý = 0 we can

find the value of the harmonic function at any point in the circ'.e z from values

of the function on the circumference, i.e., we can solve the Di-ichlet problem

for the circle.

The formula conformally transforming the circle z <R irto the circle IC .<R

and transfering tht po-nt z0 to the center of circle 0 = 0, vas found earlier:

* = _ (z - Z.) (8 .2)

In order to find the value of the function P(O) at the cerrer of circle ; .R.

it is sufficient to take the integral over the circumfereace =R. On this

circumference we have Wd .- Rde = d.

Passing to plane (Z) we obtain

! •(z--:) I=R.'R1 --z'z."(_--___.
dl, = Id j v - -- dz

IV I'z (R. - zix I

dz' 3)
- R' (8.3

On the circle z=Rev.dz=Rdy. We set :.=res, ther

S(R -- r, Rdy" •" ,

di = (R''2 )Ry Re,' *-.Rdy

Substituting this value for IdZl in the integral (9.1) we obtain an expression for



r

the potential q(Zo) at any intcrnal point of the circle z,..iel in terms of the

value of potential on the circumference - integral of Poisson for the circle

q r % . ••q ( )R". 2R o¥-4) +rdy"k
2a~ 4 2Rr coqy - t +0

Here r, 0 - coordinates of a point in the circle in which for the potential 9 is

sought; q(R, y) - values of potential on a circumference of radius R.

§ 9. Poisson integral for the Upper Half..Plane

Let us find a function conformally mapping the upper half-plane of plane (Z)

on the circle . -.R and translating the real axis into the circumference .=R

and point z0 = x + iy into the center of the circle 0 0. As is easily seen,

the complex potential of the field of two charged axes located at points z0 and z-0

with charges on them of T,=2u and r.=--2. ,

r(z)= v+•u• WI -n (9.1)

conformally maps the entire half-plane (ygO) onto an infinite semiband of width

2v and translates the entire real axis y = 0 to a segment of the axis U = 0 and

the point z = z0 to the point W = -w. The complex potential of a field of one

charged axis with charge ,=--•

) - ,-(9.2)
W, R

maps a circle radius R on the same semiband, circumference -=R being translated

into a segment of the axis UI = 0 and the point ( = 0 into point W, = -C.

Combining both transformations we obtain

i• -.ln ' li =R z--4 (9.3)

Thus the function conformally mapping the upper half-plane of plane (Z) onto the

circle . .R of plane ( a) and translating the point z 0 to the center of circle

=0 has the form

8 -Z. (9.4)



Using the expression for the value of the harmonic function at the center of the

circle in terms of its value on the circumference, we find a solution to the

Cirichlet problem (Poisson integral) for the half-plane. On the boundary of the

upper half-plane z = t, dz = dt

i -Z-4 i~z-- V.r
_2Vt_ (9.5)

(- R z )' •-,-

Converting to new variables under the integral sign we obtain

q(0) •- 2iR-•,R~u drY + Y( ,•:•• '.. :

A(O) - ( -,' (9.6)

Here (x, y) are the cczrdlnates of the point on tne upper half-pinne at which is

sought the potential T; t t-w preent coordinati- of tne real axls and q(t) the

value of potenA&Il or, the boundary of -he upper hrlf-plane.

iv. Poisszin Integral for an, Infini+e Band

In preceding paragraph we saw that a function eonormally mapping the upper

half-plane of the plane (Z) ont3 the circle M4;ft and translating r':int .O to

the center of the circle 0 = 0 has the form

'-Z.

On the other hand w'e know that the •omplex potential of the field of a charged

filament placed at the coordinate origin z = C with a cnarge v---2-,

V=rinz=V-iU

con:ormally maps the entire upper half-planv Imz.- 0 (,ftc an infinit band o? width

ir. The inverse function

2.9
'v, ,It,,,,,,0 

.1,1
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conformally maps an infinite band of width r onto the upper half-plane and

translates a point of band W0 = V0 + IU0 Into a point of half-plane zo - x + iy.

Combining these two transformstions we obtain a function which conformally

maps a band of width r of plane (W) onto a circle of radius R of plane (C) and

which translates point W0 = V0 + iU0 to the center of circle • 0,

e" -._i',-. (10.2)

Using the expression for the value of the harmonic function at the center of the

circle In terms of its value on the circumference, we find a solution to the

Dirichlet problem (Poisson integral) for an infinite band.

On the left boundary of band rz-int-=iv. dr= idt in it will cross point I>0

of the positive real semiaxis of plane JZJ. On the right boundary of band

3'=iln(--t)=tvi--a. dr -- It it will cross point of the semiaxis tc0. Consequently,

on one seml circumtferen,.e of k of t 0 plakne I

[• €= R "--'"t~" =R " -- -

lit= Rid €.-•-Z. - .. .- Idt-
ý7 i •-'- -- 2 i vi,"C V. + I I

s e - - -o (10.4)atR~a..I --95 -i V5 - Cos V

On the other semiitcrnumference of Ri - R of plane (•)

¢,._aU.,.i "R - i g + ,.

R •.~ +,~-•. (1o.5)-R ••+ ".

d.. Rid e" - sin V. di

Converting in integral (8.1) to new variables we obtain

q(0) qao(U) IitoVdt sinVd (.7)

I-I

30i s
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If one were to multiply by (-i), ':uin the band by an angle - & £nd alter its

width from r to h units, then we obtain [26]

) .[ sin kVdt

+ [ J + t) V (10.8)

where k =2 and h the width of the band.

§ I!. Normal Derivative of Potential on the Boundary of the Band

In application frequent the problem of calculation of a field reduces to

finding the normal derivative of potential on the contour of the region. If we

know the function z = f(C) which conformally maps the con~sidered region onto a

canonical region, or at least its limiting values on the contour t = f(r), then

knowing the normal derivative of potential on the boundary of the canonical region

it ic easy to find the normal derivative on the boundary of the given region also.

Actually, let us assume that in region D we are given the analytic function -

complex potential

Wt(z) - V(x.N) - i,¶(x.y). (11.1)

where V(x, y) - function of flow

p(x, y) - potential.

Introducing conformally mapping function z = f(?), we obtain the distribution

of the complex potential in the zanonical region

70:) = WIlt= - (11. 2)

Taking the derivative with respect to C we obtain

whence

Taking into account that the modulus of the derivative of complex potential is

:4



equal to the modulus of the gradient of potential T(x, y), we have

Hence, due to conformity transformation, for the normal derivatives of potential

we obtairs

S- ! ' (1 1 .6 )
K -FU-. Ov

where 6v is an element of the normal to the contour of the canonical region.

Since function f(C) is holomorphic and is continuous up to the contours of D.,

che value of the modulus of its derivative on the contour does not depend on

direction of differentiation and can be obtained by differentiation over the contour

IIA. j wt)l . (11.7)

where dt is an element of contour length of the assigned region D corresponding

during conformal transformation to an element of length dT of boundary of the

canonical region Di-

Consequently

~ (ii.8)so* an dv di i d

Let us derive a formula for the no-mal derivative of potential on the boundary

of the band. Taking the derivative with respect to V under the integral sign

of formula (io.8), we obtain

-kf,~~chk(T-U4cckV-idi

+ b- •k(,--MC+LSkVj+ I_ (11.9)

In the first of the integrals, to the integrand we add and subtract T1 (U), in the

second we add and subtract •p(U + ih):

13Z
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- ch k(v-f) cos kV - I

th lh(T - ) cos kVf +

+ ~ ~ I --kyYau) d:

2~~~ch( ./CoskV- -I) r V 1.

-2 qIt(M + I% M-TI()y 1() 1chk(: -U-coakV - dt.

Analogously

Xchk(T-U)coskV+ I T
91?-II)chkv-Th+ cos kVj2

since

I.ch k(t - cosWV- I
Ick -(T- C) --os kt V dir

2 1-a e"'cas kV 2

2 +

2 + c"" o s*I,+ I 2 11 13

Passing to a limit V 0 for the normal derivative cwk or. the lower boundary of
the bard, we obtain d

Urn

2hdr+- k P T.+ )I,(~h (1.4~2~hhTu..Id+2W h(:iJ 1 dT



Let us introduce the new variable a---U and present functions P,(T) and

91(T + ih) in the form of sums of their even and odd parts:

V t )- q I,(() + e) ÷ q ,(U - - e) + :, -r.( - )- - , dU -u )
2 -+ 2

(11.15)

+,( + r,(U + a + M) + VAU -- a + th

2

+ q,(U+6+ih)-- .(U-a+ LA)2

Substituting values (11.15) in formula (11.14) we obtain

In ý' - -_l&Uts)-v()
i., 6dV A

2-i ChkU(U + 0) + 4F1(U-0-2q- ,(r) do.+ 2A,)cbh-- de+• (11.16)

- ( + a + ih) + 4,(U--a + ihM)- 2%,(U +ih)
"2-4 chd h+ I4.

Due to oddness of the integrands,

V•,(U + a)- f(U-- a)

chka -- I
"- (11.17')

%,k(U + a + ih) -- qr,(U -- a + ihw•

ch k 1/ + I- U uvt dam O.

Analogously, for the normal derivative of potential on the upper boundary of the

band we have

lira •'-li, f ir, (U" + 'h,) -- 4r (U)1 +

+ k jYAU+a)2+4!I(U-o)-2Ta(U) do +(1.8S~chAG + I

+ k - (U - a + i a) + q, (U -- a + ih) - 2V(U + ih) do+ -•.h h/k-- I

Let us designate known functions, standing in numerator of integrands (11.16) and

(11.18), thus:
, 1(U+a)+v,(U- )-2ff,(U)=jh(k). (11.19)

ar( + LA) + j,(U--a + IA)--2j, (U +ih) -I,(ku)



We take integrals by parts

Ch 9n -_IA. 2sl~uch.jk chhu--I" [ (o t

+h kS ; (ka)cth ! (11.20)

Che T k.) th k 2; (11.21)d

We expand cthhe and th- Into a series of exponential functions:
2 2

cth 1+2 -; g ÷• ! 1 h (11.22)

SJ , do . '- ,(ka)cth±, L+ kj ,(ku)du- I "")Y' do -1l, k)d. -

+2 d I, I-cth-h -)

(11.23)

kSj ,.hkat 1, i k o -t 1 (ka) d a) --ChQ 1 IO
Ikad -1(ka)th @(kdhe

2 - l-l) (ka .th2.

If the function p. (U) is continuous and has a continuous derivative then the second

derivative q1 (U) is limited and

q;(/J)-lirm•q(U+a)--,(U-)-2T,(U)

or

j. I,,(•(11.25)
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Hence

liam t,2(h).-,cc'O, and (1im!'(kr)-a=0. (±1.26)

Therefore we have

13 001) (-th.!!~~) = 0-I1lI(hu) (t-Cth ka=

Jim 2l,(ka)ch' k= 0; (1l.27)

Is(ka)( th---- 1) O-limi,(a) th---- I) = 0.

Consequent2 v

Iim~ ~ (+~)-(U)+'? (ka) d (ku)

a..V hl'
- i- ! (k)., ] =[ U +ih)-q1 .LIn+

11k)d(a jr ftkad q(Ua) I

+ ______ Ij(ku)d(ku)~ 1.9

,2 v - d -(( )

+ 4 -- 1= ~ dka (11.30)

§ 12. Solution of the Dirichlet Problem in a Biconnected Region
Using Conformal Transfor-ation

From all of the preceding material it is clear that the Dirichlet problem for

any singly-connected (i.e., limited by one closed contour) region can be solved

as follows:

1. Conformally convert given region into any canonical region: circle, upper

half-plane, or infinite band; in other words find an analytic function establisbing

a one-to-one correspondence of the given and canonical regions.
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2. Transfer boundary values of the sought harmonic function - potential -

to corresponding (during conformal transformation) points of the boundary of the

canonical region.

3. With the help of the Poisson integral calculate values of potential at

internal points of the canonical region.

4. Knowing the conformally-mapping function transfer values of potential found

at points of the canonical region to their corresponding points is the assigned

region and thereby obtain a solution to the prcblem.

Let us demonstrate that the Dirichlet problem for a biconnected region can

be solved using infinite sheet conformal mapping of it onto a canonical single-

connected region where, in turn, the Poisson integral yields a solution [29].

Let there be assigned a biconnected region D limited by external L, and

internal L2 contours (Fig. 7a). We assume that in D there is an analytic function

w(z) = u + iv the imaginary part of

- which takes constant values v = 0

on L2 and v = h on L . Let us look

at the properties of this function.

From the maximum principle for harmonic

functions it follows that on L

a values v = h are maxima in the region,
Ai r on L2 values v = 0 are minima. There-

TN.... fore the sign of the derivative

_N ,b ZN normal to LI is the same at any point

Fig. 7. on contour t1 and, consequently, by

virtue of the fact that - t(u and v) - conformal harmonic functions

~ (yd=XsO(12.1)

Thus the real nart of functton w(z) when going around 'ontour L Iundergoes an

increase equal to N and, consequently, the value of the real part of u at any

point z of the region is infinitely-valued and equal to u + kN (k - an integer)

which means that w - u + kN + iv is also infinitely-va3ued. Therefore the region

of definition of function w(z) cn plane (z) will be an infinite-sheet Rieniann
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surface every sneet of which coincides with region D. Let us isolate in D the.

line u = 0 and make a cut cc.nalding with this line. As a result of the cut the

entire infinite-sheet is Riemannian surface is broken up into separate sheets.

On plane (w) to every such sheet there will ccrrespond a rectangle contained between

straight lines v = 0, v = h, u = kN and u = (K +I)N (X - an integer) (Fig. 7b).

The entire infinite-sheet Riemannian surface will correspond to an infinite band

between straight lines v = 0 and v = h. Inverse function z(w) will be single-

valued every value w on the band corresponds to only one value of z. It follows

from this that vWlues of single-valued harmonic function P(x, y) in region D will

equal valies of T,(u, v) ac corresponding noints on the band. I', is *aiy to show

that the "unction 9,(u, v) will also be harmonic and single-valued. Actually

harmonic function 4(x, y) can be regarded as the imaginary pvrtion of analytic

function Q(z). By virtue of uniqueness of analytic funct4.on z(w), function

2(z) = f[z(%)] = C2,(w) will also be analytic and its imaginary part M1 (u, v) -

narmonic and single-valued, At points of the banu w corresponding to points z

of region D, values of T.(u, v) will eq-al values of P(x, y), values of •q(r) on

bou.,daries cf the band will equal values of •(t) at Lceresponding points of tne

contour of region D. But from values of the single-valued harmonic 'notion, on

boundaries of the infinite band, by the Poisson integral for the band, are determined

values of the function inside the region, i.e , is the Dirichiet problem solved.

Frcm tha reasoning presented it follows that if an analytic function w is known

whose imaginary part v takes constant values on the external and internal contours

of region D, then such a function ronformally maps the biconnected region cn a

band, translating the external and internal contour of the region to the boundaries

of the banu. With the help of this functicn the Dirichlet problem in the biconnected

region can be solved just, as in a singly-connected one, with the help of -Lhe

Poisson integral.

§ 13. Transformation of Ring Onto a Band

Let us consider the function

3S
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Assum~ing z ee*. we obtain

Hence

a• -- S. W,=fl. (13.2)

On circumference Izi = r the imaginary part of this function

Fig. 8. takes a constant value eq•,.al to zero:

V-I--W. (13.3)

On circumference fzj = R the imaginarxy part also takes a constant value,

,.h -R .. (13.4)

z

Consequently the function w(z) = i in 1 accomplishes nr.finite-sheet conformal

mapping oi a ring formed by two concentric circles of radius r and R onto an
R

irnlinite band of width h = In E (Fig. 8).

Let us construct a function infinite-sheet, conformally depicting a ring

fox med by two nonccncentric circumferences of radii R, and R., the distance between

whose centers equals 5, on an infinite band (Fig. 9). Let

us consider the function

1 ,_zi~ +b , .(5.1)
__ _" W P(z) =i ,,z + ik =u+ i,.

As was earlier :ljrified the line v = const of this function

-re circumferences with centers on the ox axis at the points

176 it-bi;,=i-,b. 1G = 0 and radii R= ----. where c---+-b,

Fig. 9 Let us assume a circle of radius RI with its center at the

point x., v = O.

From this condition we find the constant k:

v- Inlz-- l+ k - Inl +r+I+k=Z-b jr, + Rtr, -- b"

-j-'--' b+b+ 2-2-de

I+ b 2ebI FT--,b-b• --
,=e 

3i. -5 
•'

In 
"



whence k = In c1.

On a circle of radius R2 with its center at the point x0 2

• • , II+ €c ,I €, (13.6 )

We express cl, c2 and b in terms of the give,. valu of R1, R2 and 6. From the

relationship R. -M_-, we find

then

)'r=bP -b
____ S_ (13.7)

From the relationship

(13.8)X, X-4 4 Re - -- - -

After conversion we find

Thus,

€, - +b'-- -

V7 __, )__R (13.10)

+ cR8. _ R,
R- € 4R•+6 R, 6 (:3.11)

Placing the origin of coordinate4 on the center of the small circle at the point

Xl, we will have z -r,,+g and

.. + + i Inc,., i IC=tn, 1 • , + etc

- C+

I ii i
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Thus the function

infinite-sheetly, conformally depicts a ring formed by two circumferences F. and R2,

the distance between whose centers equals 6, on an infinite band of width

k -inR, I
"R, I + (13.13)

Here ci is expressed by formula (13.10).

§ 1,. Determining Maximum Values of Potential When
Solilng the Modified Dirichlet Probleim

in a Biconnected Region

Let us consider the field of charged filaments located near two conducting

cylinders. Field will consist of two comnonents. Sources of 3ne will be the

charges of the filaments, sources of other - charges induced on the conducting

cylinders. Complex potent-a! of field W(z) equals the sum of the complex potentials

of each component of the field. On the surfaces of the cylinders (contours L. and

L2 ) its imaginary "art (electrical potential) takes constant values c. and c 2 . The

electrical potential of the field of charged filaments is easy determined:

U. (x. V) = Iml,(z)J = - -- ^ I +i, Z--. (14.1)

On the surfaces of the conductors at points t and t 2 its values equal:

U2

I, {t, In t, ZO (11L. 2 )

"Subtracting them from constant values c1 and c2 of the resultant poten-lal. we

obtain limiting values of field potertial cf charges induced on the conductors

U,2(1)=C,--U,(t,); U, (1) = C, - U, (-'I)-
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Considering that the potential is determined with an accuracy to the constant,.

we take c2  0. Constant c., as already indicated in § 3 is determined from the

condition of single-valuedness of the function of flux of the field of induced

charges. Let us define this constant [28].

The total induced charge on each of the cylinders is equal to zero, therefore

on the basis of Gauss' theorem we have

a -U U. o0 ( k -. 2 ). ( :! 4 .4 )

But dl' 2V2 where V2  a function of flux of field of charges induced on the
On a!'

cylinders - is a harmonic function conjugate to the electrical potential.

We have

"U' dt di = 0,-01=o-- ,=o (114.5)

i.e., the function of flux V_ is single-valued in region D.

Let us take c, also equal to zero. Then the limiting values of potential

U will be
(1.6)

U" (t ( - -- U• (); U" (4,) 1 - U, (1).)

Potential U , defined in region D by its limiting values (f1.6), will be a single-

valued function of coordinates, its limiting values assigned single-valuedly,

however, its conjugate function of flux V simple will not be single-valued since

for uniqueness of V is necessary a fully defined unique value of constant ci but

we arbitrarily have taken it equal to zero.

It is natural to assume that the magnitude constant cI is determined by the

form of the region contour and by the distribuition of potential U1 on it. Having

mapped region D onto an infinite band and thereby excluded the influence of contour

form of the region on the magnitude of cI it is possible for us to express cI as

a function only of distribution of potential on t1 ) boundaries of the band. Let

us show this.

'Taking the derivative of potential U (z) with respect to the normal to one cf

the contours and integrating over the contour we obtain

42
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We will represent potential U*(z) in the form of ".ve s om t-v -om'p.entu

U° =}- Us (Z) -r Z •.{

Here U2(z) is tha sought pot-ential sp'Isfyia t~ho con~dtion

On ýý' dt = 0(14.9)

and taking on the contours the values

Us 41) - C, -- u (4) -d u, 2t) = -Us (t),

Fctentlal g2 (zl is stipulated by the selection of constant c1 , equal to zero, and

takes cn the contours tha value6

Ul•(tt) =U*" (I' -U, (t'o-- C ; UY'=t) ,•V"(tY)--U,(t2) . (!O.

Equality (1I,7) can now be written thus:

" au" 2 au . au*

L. L L,

whence

d = M.3)

We depict region D infinjte-sh•-etly on a. band. Every aheet of the Riemannian

surface, coinciding with D, will be depicted on a rectangle with sides N and h.

The potential on tha mapped region - band - we desifnate by the subscript n.

Obviously

siitce motion along the Riemarnian surface from the left shore of the cut to the

right corresponds to motion on the band from u =0 to u =N. But on the band we

have

au' 9' 0 -(-C,) C, V
dn h~M~~!- 1.~
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whonce

C, M.

(0. the other hand,

M-f - "[u " . Ad, ±4

and this means we can write

'Me auantity is not difficult to find if one were to use formula (11.10),

connecting the derivati-., o' potential normal to the boundary with its limiting

values on the boundaries of the band.

For = A coskv -c = 0 and, consequently,

1~- 2h chsk(it - a)k

Substitutirg this value in the expression for c. we obtain

C. L)2A dh-'k +M)V.(1 (14-20)N. - 2- • u •--ch k (t L--U)-- .(I,•2

Trhe magnitude of integral (14.20) does not depend on the order of integration,

tharefore

2N T.h'k(Tr-uý)
IV- . + tr ih)l - t k (T)4 -Ct Y,) --. "hkj

" kN- Ir. + c1 -IU t h (14.2-)

Earlier we took
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consequently, on boundaries of the band also will be

t (T + 0) -U., (, + ih). U1(,)= -M U (T). (14 .22)

Therefore we obtain

kN ji U,.(,4-M)--U,,) (14.23)

The difference of limiting values of potential

AMo - U1. (T + th)-- U,. (T)

is a -,eriodic finction whl :-eriod equal to N (Fig. Tb). We represent it in the

form -,f the Fourier series

At". - o w ~inw ,c=2 (14.24)

arn& substi+ite in expresston (11.23)

L., =•--•- jchkt2t --N) +ch-kA' '•"

then

=h kA IL c oh k i T d- t -C ý

thN co vw-d

ýb 
-FUN

Let us conunider integrals standing under the sur.oatnd signs. We introduce a new

variable according to the f'ormula

+ (11-.26)

then

sin weovdt I- IV PSin %-0'd' _ 1 .7
Ich-k(21, ) + 3h-N - h2k;~ CiikV ax42

since the function under the integral !s odd, and the integral is taken betweer.

symmetric limits.
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Similarly we obtain

-- th -I dt c s %v ;-, .• , co , %wit th k(t-- A')dv -0. (14 .28 )

Consequently
& & sh kN dL T
3 ' ch - ) +.Nchk' 2 -- T +h kvh k(, = %)-

"~~ ~X +h,• ch'a inhZk
sh k.V" dnx a- I ch J.r + U'

- ki .
(14.2c)

Inc 2 -k 4

But a 0 is a constant component of the periodic potential difference AU n equal to

the mean value of this difference on segment N, therefore ry)

______ (14.30)

C8 "-€ -, -• !U, (t + i/h) -- j, ()dr ( t.30

Thus to determine the constant cI we must: 1) map region D infintte-sheetly

on a band in such a manner that every sheet of the Riemannian surface is mapped

onto a rectangle by dimensions h x N; 2) transfer values of potential U, on the

boundary of the band, calculated from 114.2), to points on the contours L and L2 ;

3) find the uoristant component of the periodic difference of potentials on the

boundary of the band. Limiting values of the potential of the fieýld cf induced

charges on contours of region D are then determined thus:

J 3111" (,t + M) - -U. (•)dt -- t).

u (14.31)U, (t,) = - ,(t,1).

- 15. Example of the Calculation of the Field
.of a Charged Axis Ln an Annular Gap

Between Two ConcentrIc-&'Ylinders

We use the derived formulas for calculating the electrostatic field of a

charged axis in the gap between two concentric conducting cylinders. The charge

oer unit length of axis equals a, the radii of the cylinders -R and R2, the axis

4.



is at Doint z.=- e. the origin of coordinates on the axis of the cylinders,

Electrical potential of a charged axis

IJ(. 4 -- L, :--z.r. (15.1)VAX*. 0)-.---

On circumferences L, and L2 its values are:

V, (R,. 4) - -- I- in InRe -- ee"

S- n 0In)'P:.-2Recos($-,)+Q: (15.2)

1,(R,. 0)= --- ne'-,
22se

a- n- hInR ,1(o- )+r. (15.3)

The function, infinite-sheetly, conformally depicting a ring on a band of

width h- In.RA. has the form

QM+ = i In -. (1 5.4 )

On circumferences L., and L2 its values are

U(R,. eo) = i In _!K1, eo _ + i In A•= + ih; (1i5.5 )

Q(R, elo)=iInRe'O --O (15.6)

Consequently, on the boundaries of the band the distribution of potential will be

such:
Vi - (15.7)

ul,.(T) - a In1 '" ,1-MQCo,(,+ • + e.(15.8)

We represrnt the difference of these values in the form of a Fourier series

S--2-R- costi IV ,AV=°('i•-U,( • [In/•" In] -I...... . I" =---2 n---
VA

7 1-2 ' c(v + t) I 2Ue.~ ~ R 4R,.) ,.,
a R.! co k C(t4 it)

- (75.0)
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The constant component of the periodic difference of potentials AU In and

consequently, the constant ci, will equal

0 In• (15.10)€,-a,. s- e"

Hence for limiting values of field of potential charges induced on the condu,'tors,

we obtain:

(is(R,. 6)m .[In IY2 1 W~ F -InR 1 (51)

L4(Rr ) ,=- In I" R;- 2R, Qco,--)+ (15.12)

These values on boundaries of the band:

03.(z+A)[In e+In I - 2 Qco,(T +, t) ]Obl -t•1 - [n -- . R, L'•I -- • 4RJ ,

2:w jet- k .. . '(15.13ý

- - -k(r +k )] (15.!4)

Let us find the distribution of the nurmal component of intensity on t,.c surface

of the cylinders. By formula fi1.29), on the boundary of the band we have

"Mi- ,----= "I, U, (u + M) - U, ,U) +

-I 0

I(a) =-2t sk(u+-,cosk(u+- +a) --cos.ku+

Ro -cosk(U,-1() (15.16)
a -(I cos ).

I

I , , , , , , ., , , ,,,,,, , , , ,, ,



1-2- cos(u*+

0. !cosk(u~~)l~G

If. --

et cosk(u + *) (I- cos ka

k i

1-2 Cow + t~) + -"

+ t, os~u,f cc&'k~ka+d)
n'+k

co k(u-Lka (d20
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Considering the absolute convergence of series we cnange the order of summation:

k k ,+-(u +o+'

S. •A.c lk(u +)[xcth.-- " - -

• hk Co -f -•t,,,(u + Co-s • ku +,0
cthscosku +

• - €;imml + $i) +

2*

+ y) 2 i" + + -•R2 (15.22)

• Substituting these values in formula (15.20) we obtain

Se.

-- m.. cth(osku + -
•~~ --- k*

Cos koku~ (15.23)1 V-e

R. 2 (OW ok 2 U; h R, .

4 R~+ t In2u- 1--!wu) c(15-2)

2* elr

(15.23)

50



I
and

c* hu.t L;u$ (15.25)

will obtain

11U-- • 'R, et +1

+ P, ,_ • I (15,26)
I--'S-•e +,p---

Analogously, for the normal derivative of potentila on the upper boundary of the

band wa obtain

a C•X R CSa

CC2X*--!- . 0 _. (5.11

Ontesurface of the Inn er conducting cylinderha the formadeitveoponta

of field of induced charges is:

au.. I I OWN 1 !•-5.29)

AThe normal derivative of uotental of field of charged axis on the surface of the

inner cylinder is written thus:

Iy ~

51



RiOCS - V

S~and on the surface of the outer cylinder

-,-' - R cs( -~ + e7

dl /, I - 2- -L- - --, -- +,-

JI.-

j

dti
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-II

CHAPTER II

MODELING OF CONFORMALLY MAPPING FUNCTIONS

§ 16. Electrical Field of Current in A Conducting Sheet

Plane-parallel electro- and magnetostatic fields in a dielectric, strictly

speaking, do not exist since there cannot be infinite sources of these fie-Ids

and there is no media with zero electrical or magnetic permeabilitles. On the

contrary, the field of current in conductors can be plane-parallel since the

current can concentrate in a bounded domain limiting this region with an

insulating surface. On the interface between the conductor and dielectric the

normal component of current density is equal to zero, the vector of current density

lies in a plane tangent to the interface and consequently the surface of conductor

may be regarded as a surface formed by the totality of flow lines. The field

of current in a thin conducting sheeýt will be plane-parallel.

From the principle of continuity of flow lines it follows

div6=O, (06.)

where - vector of current density.

In a uniform isotropic medium, according to Ohm's law, the density of current

is proportional to intensity X

-Y -- ygrad U. (16.2,

Substituting expression (16.2) in (16.1) we will obtain

div 6ydiv grid U s= y&U . 0. (16J3)

i.e., potential of field of direct current in conducting m~edium satisfies the

Laplace equation. When deriving expression (16.3) we did not consider magnetic
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Irteraction oie currents whicu in general aifects distributlcn of current density

in conductor and, consequaently, the pc'ý2ntial. Let us est.imate magnitude of tiE

[ interaction.

Let us consider two charges q1 and q2 moving in a conducting medium in one

direction with a speed v. The distai/c•. between charges is r. The force of

electrical intergation of -haraes, determining Jistribution •' field in conductor,

according to equation (16.3) Las the form jiB]

I.i1 - "-"...L -'q•q (46.4,)

The force of magnetic interaction of moving charges aistorting this distributionI
of the field is written thus:

The induction B of the magnetic. field of a moving charge q2 at a distance r fiom

it equals

-,-- (!6.6)

and is directed along the normal to the plane of vectors V and :. Placing this

value of induction in expression (16.5) we obtain

ItuI!-q - i-! q9jW. (16.7)

Consequently we write the relationship between the electrical and magnietic

intensities affecting the distribution of current density in the conductor

* I.~ I(16.8)

where c - • = 3-108 m/s - velocity of light in emptiness.

It is known that the average speed of directed motion of charges in metal

does not exceed I m/s, i.e., v2 S 1 m2/s and consequently the forces of electrical

interaction of charges moving in the conductor are in 9-1016 times greater than

the forces of magnetic interaction. Influence of the magnetic field on distribution

of direct current in the conductor is so insignificant that It can always be dis-

reg&-ded and it may be considered that the electrical potential of the field in

a L.A1UUM with constant conductivity satisfies the Laplace equation.

Let us consider uniform flat conducting sheet of constant thickness A and

unlimited extent (Fig. 10). At point 0 we connect to tie sheet a thin conductor and
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pass through the sheet a constant current I

(it is assumed that the return wire is connected

infinitely far away). Let us draw a circle

I of radius r with its center at the point 0.

In accordance with the principle of continuity

of current we have

Fig. 10. *. -6A -'AE, -E.

Here 
.

-- density of current normal to circle 1;n
A - thickness of sheet;
I

I - ccnductivity of material of sheet;

y = 7'A - conductivity of unit of surface of sheet.

Due to symmetry, on the circle I En - E = const and I - yE-2yrr. Hence

Fro -(16.10)

r0 - unit direction vector of i.

Let us assume at some pol :t, at a distance ri from point 0, a potential to

equal to zero: U(r,) - 0. Then potential U at any point of the sheet at the

distance r from point 0 will be determined thus:

Id

I- l,+,- (16.11)

Lines ;f equal potential will be concentric circles with their centers at point 0,

currert lines will be rays radiating from point 0, Precisely such picture has

the field of a chargeuJ axis, the expression for potential of which differs from

(16..1) only in that it includes a linear charge ¶ instead of current I and e

instead of y. Consequently field of current Li sheet -n this case can serve as an

analog of the electrostatic field of a charged axis in a dielectric.

Let us assume that now current is brought in to a section S of the surface

if the sheet so that to each element of area dS is brought a current di = b5Z.

The component cf potential dU giving rise to a current di at a distance r from it
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equals

dU-- I dilnr=* Wi- Inr. (46.12)

Potential caused by all current I brought to S has the form

U - 6InId + e, (16.13)

There is an analogous formula for potential of a flat electrostatic field in a

dielectric and for the vector potential of a magnetic field in a uniform medium.

The analogy between a field of direct current in a flat conducting sheet and

plane-parallel electrostatic and magnetostatic fields is used for modeling electro-

and mrgnetostatic fields. In this respect the field of current possesses great

advantages over other physical fields. The field is easily produced and its

intensity easily measurp4 at any place.

Potential U of current field in a sheet is a harmonic function and has it

conjugate function of flux (or current). By value of function of current J at

point (x, y) of the sheet we understand the magnitude of current I through any

section connecting point (x, y) with initial line of current (on which is taken

J = 0) divided by the conductivity of a unit surface of the sheet

J(x. y)= I .y (16.14)
V

Conjugate haLmonic functions U and J can be reprEsented in the form of imaginary

and real parts of an analytic function - complex potential !

Q(z) = J(x, y) + iU(x. Y). (16.15)

From everything that has been said onr may see that the field of direct current

in a sheet can be used for simulation of any flat physical field described by

harmon!.c function q(x, y).

Let us consider the possibility of solvin& the Dirichlet problem by

simulation the soaght function 9 with an electrical field of current in a

conducting sheet [36].

Stationary plane-parallel field of current in a conducting sheet is

characterized by two conjugate harmonic functions - electrical potential U and

function of currents J,each of which can be selected for modeling. In Fig. 1" is

given Lhe fundamental diagram for simulation of searched in region D of harmonic

5';
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!Žinction qb(x, y) by an electrical

+ - potential U(x, y) on a conducting

U i- sheet cut in the form of an

'- assigned region D. Function T

4..s given on the contour I by values

of electrical potential U(t) - 9(t).

The value of pctex.tial at any point

lM(x, y) of the region, is proportional

t- to the value of 9(x, y), can be

measured with an accuracy of the

constant by a voltmeter connected
Fig. 11.

between the pc int M(x,y) and the

point MO(xN, yo) at which the potential is taken equal to zero.

In the majority of practical problems we are not interested in the harmonic

function 9, itself but in its gradient and in particular the normal derivative

on boundary -•. This quantity can be measured, as shown on the diagram with a

galvanometer and the help of a double probe the distance 6n between whose needles is

precisely held:

a, =--An d-*-- (16.16)

Practical set-up of an installation for simulation of a potential function is

difficult: in order to ensure independent assignment o.f potential at every poinu

of the boundary, the model should be prepared from a conducting material with

a high specific electrical resistance, otherwise upon establishing the potential

at any one point of the model contour the potentials of all neighboring points will

be changed. Metallic zheet• possessing good homogeneity have a low specific

resistance but existing conducting papers are nonuniform ana poucntial of field of

current in them differs from harmonic. During measurement of gradient of potential

on a rodel of paper this difference leads to impermissible error.

It is considerably more ccorvenient and more exact to model a harmonic

function 9 of a current function J in a metallic sheet. In Fig. 12 is shown

fundamental diagram of such a modeling. Boundary values 9(t) of the sought

function 9(x, .y) are given by the magnitude of current supplied to the model

circuit. Here, for an increase of threshold function on a certain section of the
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I I.

I I

t

Fig. 12.

boundary we obtain
I

At (t)M (t)(16.17)

where i - current supplied to given section of boundary, 7 - conductivity of unit

of surface of sheet.

Measurement of current function in any point of the region can be made

either with a special magnetic band connected to a ballistic galvanometer

a.., fW == YJ(x, Y a:p(X. Y), (16.18)

or with a double probe 'onn,cted to a voltmeter. For this we present J(x, y)

in the fcr of an integral taken along the line connecting section of contour L

on which J - 0, wiLh point (z),

Ž-dt1 - dt. (16.19)

Replacing the integral by a final sum and considering A = ft, we obtain

AU.. (16.20)

Component AUk is measured with a special double probe whica breaks the line Into

m parts each equal to the distance betwecn needles. The probe is mounted in such

a manner so thpt the average distance between needles coincided with the middle

of section of straight line and needle are disposed on a perpendicular to this
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section. Measurement of the normal derivative of current . on the boundary is

made with a galvanometer connected to the double probe. In virtue of the

conjugation of functions U &nd J normal derivative of current iz equal to the

tangential derivative ele: trical potential

tangentia W1.1

and consequently the voltage drop nessured ovea a sufficiently small section At

along the bounder., of the region is proportional to the derivative of current Oil

this section:

at (1.6.22;

Simulaton accrrding to the diagram shown in Fig. 12 also contains essential

deficiencies:

I - for every concrete problem it is necessary to prepare its own region

model which, when requirements for accuracy of simulation are high, requires a

great expenditure of qaalified labo.r;

2 - for obtaining accuracy of simulation it is ne.'essary to ensure sufficiently

accurate assignment of boundary values of modeling funct',n over the entire contour

of tne region; for this a large number of current sourc. .. re. tired;

3 - appraisal of accuracy of simulation for an arb ary tVi region is

hampered; use of the idea of conformal tranrformation [25, 37, 38, 423 would

vermit avoidance of these difficulties and creation of universal analog computers

for solution of Dirichlet and Ne~sanan problems.

§ iT. Smuulation of a Function Conformally Depicting a

-- nlyg-cohnected Reglon on a Band

Let there be given a region D bounded piecawise by smooth contour L.

Let us perform the following experiment. From a thin uniform conducting sheet

we cut a model in the form of iegion D (Fig. 13). To two points of the model

countour, A and B, we connect a dc source. Let us consider the field of current

in the model. The normal component of current density rn on the model contour

is absent (6n = 0), consequently on the contour & = 6t. Let us take contour line

AmB as the initial line, i.e., on it we set J = 0. Then value of stream function

J in any point M of the model will equal current I flowing through any section

connecting point M with section of contour AmB divided by conductivity of a unit
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Fig. 13.

surface of sheet y

Yj y,. (17.1)

Let us take also potential of point C, lying near point A, equal to zero. Then

potential U at point M will be equal to the voltage between points ?A and C. On

section of contour AnB of stream functions we take the value

'N ' (±7.2)

where IN - total cuirent through the model.

We assume that contact is made at geometric points A and B. Let us consider

the environment of the point of contact. In it converge two boundary flow lines

J = 0 and J = JN (Fig. 14) and, consequently, all

intermediate lines. Field pattern in environment

of point of contact is similar to field pattern

of charged axis and lines of equal potential differ

little from concentric circles with centers at the

point of contact. Let us find the resistance of

Fig. 14. environment of the point of contact. Resistance

of band of width dr and radius r equals

drR a .17.3)

Resistance of the entire environment of the point of contact is

R= dr lnr -n- r+ co-a, 174
iyr •, .

i.e., resisGances of contact points are equal to infinity. This means that with a
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finite quantity nf Cnurant thrnAgh +ha mmr'l th. "T-+a÷4al T!T po of4- ^€ •ontact

should be infinitely great (Uk = ±0)

Thus the complex potential of the current field in the model Q - J + iU

takes the following boundary values.

1. On section of contour AmB real part of J takes constant value J - 0,

the imaginary part U varies from -Q at point A to +co at point B.

2. On section of contour AnB the real part of J takes constant value J -J

the imaginary part of U also changes from -m to 4+m.

Consequently on plane (a) region D is converted into a vertical infinite band

of width JN = h between lines J = 0 and J = JN* Complex potential Q = J + iU

is a function conformally depicting region D on an infinite band. For convenience

of depicting on figures U and J in expression for Q we change places.

Field of current in model will not change if contacts A and B are made on

equipotential lines U = 0 and U = UN. The form of these lines near points oi the

contour !. and B can be indicated beforehand, namely, does the point of contact

lie on a smooth part of the contour or coincide with its angtlar point. At its

inter~cction the line U = const will differ very little from arcs of a circle with

its center at the point of contact since the point of contact for function Q is

a singular point of logarithmic type. In this case the part of the model, not

Uccupied by contacts, on plane (Q) will be depicted on a rectangle between straight

lines J = 0, U = UN, J = JN' U 0 0. The analytic function - complex potential of

field of current in model N(z) - being analytically continued through lines of

contacts on sections of the model under contacts, will map these segments on two

infinite semi-bands of width JN = h supplementing the rectangle to infinite

band in both directions (Fig. 15).

The accuracy of simulation will depend on homogeneity of sheet from which

is prepared model, accuracy of preparation of model contour, and degree of

coincidence of circumference of contact with line U = const of the field of

current in the model if current is brought in at two geometric points of the

contour.

Let us consider now how it is possible to moael a function conformally

mapping a singly-connected region D, external with respect to closed contour L,

onto a band (Fig. 16a). Reasoning just as in preceding case, for this it is
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Fig. 15.

necessary to make a model from a conducting sheet in the form of the considered

region and to two points of model contour introduce a direct current. Complex

potential field of current in such a model will be a function conformally

neeppsng reymon D onto a band. Contacts may also be made along two small arcs of

circles with centers at the points of contour A and B.

However during preparation of such a model an essential difficulty arises.

Region D is infinitely large but the external dimensions of the model must be

limited. The external contour of the model will introduce distortion in field of

current in it since on it is constrained the establishment of a constant value

of current function J = const. The error introduced by the

O~ external contour of the model when its radius is small

can be so great as to essentially distort the mapping

S 0A function not only in points of region remote from contour

1; L elso on the actual contour. Let us estimate the magnitude

of this e!rror. If the model were of unlimited dimensions

then the complex potential of the field of current in it

• •would have by its own sources of contact charges to which

a direct current is supplied and the distributed charges

applied to the countour L are determined by value J = const

I Bon the contour L. Let the external contour of the model

b now be made in 'he form of a circle of radius R with center

Fig. i6. in middle of the segment connecting the most remote points

of contour L. Let us Join the contacts of the source of current to these points.

On the external circuit also is constrained satisfaction of the condition

J = const, i.e., there will appear an induced charge. Let us estimate the

distorting influence of this charge. For simplicity of consideration we will

limit ourselves to an appraisal of the influence of only that part of the induced
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charges on the external circuit which are produced by charges of the model

-o.nts

Applying the method of mirror images, we fi1nd the complex potential of the

fielu of charges induced cn the contour of the model by charges of the contacts.

Let us assume that the origin of coordinates coincides with the center of

external circle R and the contacts with charges ±+ are situated at points ±r.

Then the complex potential of the field of induced charges will be written thus:

ST in- -- I -I _ in_ _ (17.5)

The modulus of this quantity at point t of contour L has the form

I2x("I= •ny i+irt (17.6)

We approximately re~lace the mapping function by the complex potential of

field of charges on contacts on an" unlimited model
$

Z--r".+.----1
In r (77

2ny z+r 2iiy z+-7-

At point t of contour L we define the modulus of this quantity

I-
In -r I ItJ

2xy +± XYr',7.8)

The relative error introduced by the outer contour of the model at point t equals

6 Q- - ti= •- (17.9)

So that this error will be less than 1% it is necessary that the radius of the

outer contour of the model be more than

Sa 10r. (17.10)
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This error can be eliminated without increasing the dimensions of the model. For

this it is sufficient to perform a double transformation: analytically with the

help of function C = 2! to map region D, external to contour L, onto internal
z

region region D. limited by new contour L1 then the conformally transform region

Di onto an infinite band by modeling on a model of a conducting sheet. For this

is selected inside contour L a point in which is considered z - 0. Expediently

this point is selected in such a manner so that circumference of radius with

center at this point coincides as near as possible with contour L. As was noted,
R2

with the help of function ý(z) =-- region D, external to circuit contour L, is

mapped onto region D1 , bounded by contour Li (Fig. 16b). Here point z = c shifts

to poln) C = 0. From a conducting sheet is cut a model in the form of region Di.

To two, remote from each other, sections of the model contour are soldered contacts

in the form of round washers of small diameter and a direct current passed through

the model. The complex potential of field of current in the model W(C) = W ,

considered as a function of points z of region D, will be a function conformally

mapping region D onto an infinite band of uidth h = 1 and translating point

z = w to point S0 = Jo + iUo.

By the same method, applying preliminary inversion

with respect to a circle of radius R, is modeled a

conformal mapping of semi-infinite region D with assigned

boundary L (Fig. 17). For this semi-infinite region D

with boundary L of plane (z) is converted to limited

singly-connected region Di with boundary Li of plane

C by simple inversion with respect to a circle of

Fig. 17. radius R [39]:

Rm  R' ____

R: " (:7.11)

Here end-point z = c passes to end-point C = R2 /H and internal point z = -H of

region D passes to internal point of region Di coinciding with origin of

coordinates C = 0. The indicated transformation is conformal and in order to

find the conformal mapping of semi-infinite region D onto a band of width h it is

now sufficient to determine the conformal mapping of region D, onto an infinite

band.



D 1. Determination or Constants of the Christoffel Formula
for Region Bounded by a Closed, Nonintersecting

By the presented method of simulation of conformal transformation easily can

be found the constants of the - Christoffe]-Schwarz. formula both for internal and

also for external regions [20].

Let us assume attempt to find an expression for a function conformally

mapping the upper half-plane onto the interior of polygon L. For this from a

conducting sheet will be cut a model in the form of region D (Fig. 18) and at

two remote angles zI and zm to it are Joined contacts in the form of washers of

small diameter. Through model is passed a direct current and determined the

potentials Uk of angular points zk of contour of region D in fractions of total

potential drop UN between contacts of the model. Let us assume that they are

equal, respectively, to U2 , U3 , ... , Uml, Um+, ... , Un. With the help of

function C = E + ir = e /h'n we map band of width h on upper half-plane (C). Let

us designate constant ej/h = a and then C = a . Angular points of the contour of

region D z2 , z3 , ... , Zm1 (Fig. 18) after mapping onto a band wi)l corresponid to

the point with coordinates (Uk, 0), lying on lower bound of the band. By these

points on the boundary of the upper half-plane will correspond to points with coor-

dinates a = a 2, a = a , ... , a in-i = a -(Fig. 19). Angular points

Zm+i, ... I zn on the band will correspond to points with coorj'.nates (Uk, h), lying

on the upper boundary of the band. On the boundary of the upper half-plane they

will correspond to points with coordinates

adQ+' a-A+m +Um-a(*+§, , a m--au/.

Angular points z1 and z2 potentials of which must be U. = -w and UM = +a on band

will correspond to points f2, = -- and .m = 4w. On the boundary of the upper

half-plane they will correspond to points with coordinates

a% d =-.0 and a'mi . a" . a.

Placing these coordinates in the Christoffel formula we obtain an expression for

the function conformaliy mapping the upper half-plane onto region

Z(- (T -- V)6-I... (O .t,) -(,+a-n+I)%-+,-'...
1 '..T+ :"', (18.1)
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Fig. 18. Fig. 19.

Here al 01 2, ... an ara angles between neighboring segments of the broken lire

in fractions )f v, a = eJ/h; C the coordinate of the point of the upper half-plane;

z(C) the coordinate of its corresponding point in region D.

b

I &.1.

c d

Fig. 20.

If an expression for function conformally mapping the upper half-plane onto

the exterior of polygon L is sought thcn we proceed in the following way.

1. Region D, external tc polygo..al contour L, with the help of function
R2

C El-- is mapped onto region D, bounded by contour L,. Point z = co will, in this

z&

case, go to point C = 0 (Fig. 20a, b).

2. Region D, is mapped onto an infinite band of width h by means of

modeling. Assume that the contacts aie attached to the model on sections of

contour C ns Cl and Cm, Cm+l corresponding to sides zn, zi and zm, zm+1 Of the

polygon. On section of contour of model Cl' C21 ... I m we take J equal to zero

and on sectA-':n Cn C, potential of contact J also equal to zero. Then during

n' L
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transformation points C11 .. "" C., corresponding to angular points of the

polygon ZI, Z2 , '... zm will go to points U1 , U2 , ... , Um, lying on the lower

boundary of band J = 0, points 'C+,, ... , C, will go into foints(UV3, + i-),... ,(U,4. + ),

lying on the upper boundary of the band, points C = 0, corresponding to point

z = co, will go to point %0 = U0 + ij0 (Fig. 20c)

3. The band on the upper half-plane is mapped with the help of function

C(Q)A= (Fig. 20). After mapping onto the boundary of the upper half-plane

angular points of the contour L zi, z2 , ... , zm will correspond to points with

o-- , a-es+, -- • Un , angular points z Zm+2 * -..., Zn
coordinates

will correspond to points with coordinates -e -e . Point z = co will
X

correspond to point r= t. Substituting these values into the Christoffel

formula we obtain an expression for the function conformally mapping the upper

half-plane onto region D and translating point C 0 into an infinity distant point

(v -aus)'(z- Guls)@1 - - (V - a U 1")~ 4"1X

Z(D)= c X (T + dt+')f"+'-'. .""(t+ au-)GI"-d'd
(,)= r (18.2)

"U f
Here a = t h-, I is the current through the mod 1 of region Di; a,, a2, "'''

an - external angles of the polygon measue'ed in fractions of r; UI, U2 , ... , Un -

potentials of points of model corresponding to angular points of polygon

measured with respect to the contact where it is assumed U = 0.

§ 19. Modeling of a Function Infinite-Sheetly, Conformally
Mapping a Bicoupled Region Onto a Band

Let there be given a bicoupled region D = D + D2 having one or several

axes of symmetry (Fig. 21) and it is being required to find a function carrying

out infinite-sheet conformal mapping of region D onto an infinite band. As was

shown in §12, this functicn is determined by the constant values of its imaginary

part on contours of the region. Let us prepare from a conducting sheet a model in

the form of region D equal to half of region D over the left side of the axis of

symmetry. We realize contact along segments ab and de of the cut of region

D and connect the model to a direct current circuit. Let us consider the field

of current in the model. The magnitude of current I !lowing through any line

connecting point M of D wit] section 6ur of the contour, divided by the
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._conductivity of a unit surface of the sheet Y.

is equal to the function of current J at point

M I( .-L). The magnitude of voltage between

A1 point M and contact a6, on which is assumed

U U 0 will be equal to potential of point M.

From continuity of the normal component of

current dnsity 5n on the model contour it

Fig. 21. follows trat 6n = 0 and 6 = 6t, i.e., the

model contour coincides with lines of current

J = consc. In other words, the imaginary part of analytic function 0 on contour

section aHA is constant and equal to h: J =L IN = h. On contour section 6Mr, J = 0.
'Y

Let us take the scale of potential such that the potential of contact rA equals

UpA = - units. Let us assune that we performed the same experiment with a modelIt

in the form of region D (with the rig@ht side of region D) then considering, as
in the first experiment, contact potential rA U = A and on section of internal

rA 2
contour J = 0, we obtain, considering the former direction of current, the

N N
potential of contact aO-U-.-6.+- N and on section of external contour

J - h. Due to symmetry the value of !2Y at the point of contact rA on model D'On
equals the value of ýý at the same point of contact PA on model D". Assuming that

W .= we obtain that at points of intersection rA with both sides of the

of the cross section of the function 11 = U + iJ coincide and, consequently, S1

can be extended from D' into D", i.e., D' and D may be electrically connected

along rA after such connection of the field in models D' and D no longer

changed.

Let us consider section a6. Due to symmetry of values of J on both sides of

the section also coincide, values of U are different. On the side D', U = 0

on the side D" U = N, i.e., during passage alon( . internal (or external)

contour real part U of function f undergoes an increa'e equal to N unitb. We take
!It

still according to the example models D', and D, and co- bine them with the first
.!

examples D' and D" in such a manner so that model D. falls under D" and D,
falls on D' We connect electrically along sections a6, Dt with D1 and D wit,

D then, passing to section rA, we obtain on D' Ur• = N on DI Urx=Z N.



continuing such an operation an infinite number of times we obtain an infinite

number of electrically united examples of models of region D supcrimposed one

on the other. In other words, function 11 in region D is infinitely valued with a

real period N. Assuming what values of the imaginary part of this function on

the external L. and internal L2 contours are constant and equal J = h and J - 0

we conclude that function S1 - U + iJ - the complex potential of the field of

direct current in the model - will be sought.

Let us turn to simulation of a mapping function for a bicoupled

asymmetrical region [30].

Let us consider region D, limited by two contours L. and L2 . Let

contour Li embrace contour circuit L2. As is known, function n = v + iJ,

infinite-sheetly conformally mapping region D onto a band of width h, is defined

in D by the following limiting values of its imaginary part on contours of the

region:

onL, J , onL JI=O." (19.1)

For brevity we shall call S1 simply a mapping function.

Mapping function il can be modeled with a complex potential of field of

current in a model prepared in the form of region D from a conducting sheet. With

the help of contacts in the form of contours Li and L2 made from material with

conductivity 7k many times greater than the conductivity y of the sheet and

connected to the model along L. and L2 , we connect the model to a sourcr of

direct current. Through the model will flow a direct current whose field will be

characterized by analytic function 01= vI + iJl' a complex potential, where

onL, UIV U ,and on L.v A= 0. (19.2)

From comparison of (10.2) with (19.1) one may see that for function Q, on

the boundary is determined real part and for function Q - correspondingly the

imaginary part. Consequently, f0 and S1. will be orthogonal where v. corresponds

to J and J. corresponds to v.

As can be seen, the problem of simulation of a mapping function for doubly

connected region D in principle is solved very simply. In practice however the

matter is complicated by the fact that measurement of values of complex potential

n at points of the model is hampered. Simulation of a mapping function by complex



potential Q, permits simply measuring in every point of region D only magnitude vi,

corresponding to imaginary part J mapplig function n, and to find only one coordinate

of point 11 on the band corresponding to point z in region D. The problem could

be solved constructing the second model in the form of region D and assigning to

function Q2 boundary conditions (19.1), in which h is connected with VNi in (19.2),

so that functions 42 and Q. are not only orthogonal but also have identical scales.

This would be easy to carry out if we knew the position of at least one line

J1 = const of the field of current 01 on the model. Then having cut the model

along this line (first removing contacts on• L, and L2 ) and joining both sides of the

cut contacts preparea in the form of the line of cut it would be possible to pass

through the model a direct current whose field is characterized by the function Q.

If region D has an axis of symmetry then it is known beforehand that the

cut must be made on the segment of this axis between L. and L2 since on the indicated

segment J. = const, consequently, v = const also. On such a model is measured the

real part v of mapping function 0, after which function n may be defined inasmuch

as its imaginary part w measured on the first model. If, however, there is no

axis of symmetry the line JI = const cannot be found precisely and, consequently,

it is impossible to model the mapping function Q in region D. In the literature

is described a method of constructing lines Ji = const as follows: With the help

of contacts of great conductivity there are applied to each of contours L and L2

of a model made in the form. of region DV, constant potentials v and v . Then

with a probe connected through a measuring instrument to one or the contacts are

plotted a number of equipotential lines and then is constructed a line normal to

them, taking it as the line J. = const. The accuracy of construction by this method

obviously depends on subjective peculiarities of the performer and an appraisal of

error of such a construction cannot be calculated.

Let us 2onsider in principle an excellent method of determination of line

v = const mapping function Q==v+iJ in two-connected region D.

Let us take region D, bounded by external Li and internal L2 contours. We

prepare from a conducting sheet a model in the form of region D and make a cut

along straight line a6 connecting LI and L2 (Fig. 22). To both sides of cut a6

we attach contacts, preparing them from a material whose conductivity 7k is much

greater than the conductivity of the sheet 7. We pass through the model a direct
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Fig. 22.

current. complex potential of field of current in the model Q'--u+J1 will be a

function carrying out conformal mapping of region D with cut a6 ontG a rectangle
I I

Sthe mapp ing r ato function n v+ J

v =cont. ontnuig smmericllyfuntio f2throug listne ofacuesJt a6 e notc

~' ,

ta cotor of negbrn (fo abv adfobe ow) sheetous of the Riemanian

contour o3. region Dans tl, vwlus ot the2

current.J functioml potenti of fieldofturrenmat in t nhiehod n s'- J wil b ah

fintiaon carryin oiti onform m apingt of region D with J cut and Jn h. H retngle

cniioenayse that fusncetion Qut maps mD notbitorary band doeunt onincideegith limineb

bo u onetd b sCting uinges sy e 0 ically iun0ti hnd sgue in of 2rut a is note

th aking arbitou r y cut neig (Fig. 22oe intersectd inel vt so tha ofanought

function S1wit the imiina of parinition of functions tne

is b Fig. 2. Litted the anddivergee el, t will not e t he and gtar

pV onst Continuin smtt ful - cont ion Lofth line of cut). ah e otie

Riemarnnian surface will not be constant and equal to J = 0 and J = h. Hence

one may see that function 12 maps D not onto a band but onto a region limited by

two nonintersecting curves passing periodically in segments of parallel lines

(Fig. 23).

Making arbitrary cut ad (Fig. 22) we intersected line v = const of sought

function 12 with the line of cut, Obviously the divergence of functions 12 and 1

is bigger thz greater the divergence between the line of cut u = const and the

lines v 7const. The latter may be characterized by the maximum 1alue of derivative
?Av on the line of cut (dl -- elcment of line of cut).
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atiuailty -=grauvsini is proportional to the sine of angle e between

tangents to the lines v = const and u - const at their point of intersection. At the

limit where a = 0 L--=0 both the line v = const and u - const coincide. Due to

conformity mapping onto plane P. of the angle between lines v = const and u = const

at t' ir p ints of intersection is everywhere preserved •n designates the value of v

on n ). Taking into account the fact that on plane &I element dl will correbpond

to element dJ , we conclude that divergence between the lines v. = const and the

straight line u = const may also be characterized by the maximum value of derivative
8 w , -- g r ' s s . A t t e l i t w e e 8 w0 •
f =jgr'osin9. At the limit where 8=0 =0 the lines v = ccnst convert

to straight lines u = const.

Let us show that tie greatest divergence between lines v. = const and the

line u . g, intersecting them is less than the biggest divergence between lines

vn = const and the line intersecting them, u = N (or u = 0). Really the boundary

conditions for il on contouirs L. and L2 coincide with boundary conditions of the

sought function

in other words the lines v = const and u = const intersect contours L1 and L2 at

right angles. On plane S1 L1 and L2 will be converted into straight lines J = JN
I I

and J = 0, and element normal to them dn into element dJ Consequently, on

plane Q we have -z,=0 on both straight lines J = and J = 0.

Let us assume that the greatest divergence between line u = N and lines

vn = const intersecting it will equal 1-1 =m, t 1-n on the entire conteur of

rectangle OPqN (Fig. 23) into which will be transformed region D with cut a6,

values of the quantity Will be determined. But &r in the rectangle is a

harmonic function (real part of analytic function .- = --- + I -r ) and consequently,

can be determined within the rectangle by its own values on its contour.
Let us estimate the biggest magnitude of divergence or 'he line

U For this we map the rectangle onto the upper half-plane a +iV in suen a

manner so tiut point goes to point • = 0, point -' = +.il passes to
2 2 M

f A..



point co= c, and point S - N to point C I. Then on boundary of upper half-plane

segment O. -2- will pass to segment '[-1, 01;[, N - to segment [0, I]. Segments

OP and NIQ, will become respectively [ii, s nd I,.{, the remaining part
I- 

N k

of the real axis will correspond to segment PQ. Here the line u = N will correspond

to imaginary axis e 0 (Fig. 24).

At corresponding points of the rectangle and the upper

ftJ Oftv
half-plane values of function will be retained.

g- Let us estimate the greatest value of on the

Fig. 24. Naxis 6 = 0 corresponding to the line u = ý, increasing a

fortiori the divergence on line u = 0 ( u = N) taking it constant and equal to the

greatest value of m. Applying the integral of Poisson for the upper half-plane we

have

-I .-

mi rtI] 4a~t- - ,r -
•--4 o., a 42 ;%v + V2 n '-•

I

I ~ ~ ~ ~ ~ ~ ~ ( __________ ______

Sv-+ I " k+1(19.4)

For v, = 0 and v a* this magnitude is equal to zero and, consequently, on the

axis e 0 has a maximum. Let us take the derivative of argument I -k) i

respect to P and equate it to zero

(-- ,(,+ -1)- ( -L-I)

whence
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flonsv1n t 11,o1 mai= vau UV I n '11Ce U= will be

I
[lVi-!C arcth 2 2 .- k

2X_ m arrTctg (19.6)

2j/

where by condition

0O9k< 1. (19.7)

Let us determine the value of k, at which |C- N = mL Obviously this will

be under the condition

rct -- (19.8)

or

tg.= I -k Or k= 0.

Thus with any ratin -f sides of the rectangle N the maximum value of ["r-

will be less than the maximum value of M -m. Hence we conclude that for
I a-N

any two-connected region D the divergence between lines v = const and u s

always smaller than the divergence between lines v = const and u = N(u = 0).

Example 1. Let us assume that the ratio between sides N and JN of a rectangle!N

on plane sl equals two. The function depicting on the rectangle an annulus with

external R and internal r radii, _,ut along the radius e = 0, has the form

r= i In
- (19.9)

Point Z, = rel it translates to vertex ,I= 0, point Z2= Reif to vertex

CK =_i|--I n j and finally point Zs=re'R - to vertex $=-2it=N.

The ratio of sides cf the rectangle N.= 2J, will correspond to a ratio of

radii of the ring

2X RR 2,-' g=In-
nT = 2

|,4,



whence R=mgt23r. On plane C after transformation of the rectangle into the
N

upper hs.ilf-plane in such a manner so that point 1'-- goes to point 0 and
•,N

' - +i4s to point ci= o, vertices of the rectangle will ccrrespond to the point

1 Z, [121. Hence we obtain

M. luftc 2..Vi -4 r M- 0.172 =0, 1Im. (19.10)

Consequently, at a ratio of radii of the ring R--23r the biggest possible

divergence between lines v = const and their intersecting line u is almost

10 times less than the greatest divergence between lines v = const and their

intersecting line u = N. With decrease of the ratio of radii of the ring the

divergence will decrease.

Example 2. Let us assume a relation of ring radii R = 2r. Then for the

relation of sides of the rectangle we have

N 2f' 2n 907
in-i ' 0.6931-

The function which maps the upp2r half-plane of plane C onto the rectangle has

the form

0 = A,' V d-t-
S(19.11)

N
The ratio of sides of the rectangle T corresponds to the ratio of full

elliptic integrals [231

2K N
907,K- "----NN 90'(19.12)

where

K VC.)(1 A). K'= dl

S1-. (19.13)
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The greatest value of ratio •. available in tables of elliptic integrals and
2-4,841 k,

equal to •1-57 6.16< 9,07, corresponds to values e=0,999 and k••O,00i.

Consequently,

I > k > 0.99, k > 0,9995. <- <,005.

Hence for a maximum possible magnitude of divergence between lines v = const and
the line intersecting it u = f we obtain

2a. - .0ooo--, 2
[M ]..__ < - m arctg L- < 2--m arctg 0,0003 =0,0002m.

(ig9.i4)

In Fig. 25 is given a picture of the lines v = const and u = const on a model
cut in the form of an annulus with the ratio E = 2. Here the line of contactr

u = 0 and u = N coincides with the tangent to the internal circumference of the
ring, i.e., the divergence on the line of contact is
the highest possible. From the given picture of
lines v = const and u = const one may see that

already at u = 0.2N divergence is practically absent.
Thus, in order to mcdel mapping function Q in

a two-connected region and to measure its value at
any point it is necessary to assign constant
potentials with help of contacts on contours of the

region Li and L2 and to measure the value of v1Fig. 25. at all points of interest during calculation.

Then on another model of region D, similar to the first but without contacts, along
LI and L2 make a cut along a line approximately corresponding to the line J = const.
To both sides of the cut join contacts prepared in the form of the line of cut and
pass a direct current through the model. Measuring N and JN calculate the highest
possible divergence between lines v = const and u = N. If magnitude of divergence
does not exceed the permissible error then line u = N is taken for the line
u = const and, making on the new model a cut along this line, constant potentials
are applied to it by contacts. If however, magnitude of divergence exceeds the
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N
permissible coinciding with line u on the previous model, etc., so long as the

divergence is greater than the permissible error.

In final analysis modeling of the mapping function is produced on two models

of identical dimension prepared from one and the same conducting sheet. On the

first model contacts are connected to contours Li and L2 on the second - to the

shores of a cut along the line corresponding to the line J. = const of the first

model and contours L1 and L2 free from contacts. On the first model with the help

of a null-galvanometer, connected as a potentiometer, the family of lines vi = const

corresponding to the lines J = const nmapping the function 02 is plotted. Here a

magnitude of interval 6vI between neighboring lines vi = const is given. On th#

second model is plotted the family of lines v = const also at a defined interval

Av between neighboring lines.

Let us consider under what conditions the real and imaginary components of

mapping function i onto both models will be measured in the same scale.

Let us assume that on the first model the voltage applied to contacts along

L, and L2 equals UN, the current through the model is 1N and the dc resistance

of model is r. According to Ohm's law we have

U (19.15)

Let us assume that now on the second model with contacts along the sides of

line J = const the voltage between contacts equals vN, the current through the

model is IN and the resistance of model R. According to Ohm's law

Y (19.16)

For coorlination of scales of quantities v and J on both models it is necessary

so that the magnitude of uN of the first model equal the magnitude of J*N of the

second model and, conversely, the magnitude of vN of the second model equal to the

magnitude of of the first model, i.e.,

Substituting (19.15) and (19.16) in (19.17), we obtain
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whence

yr. (19.18)

Let the magnitude of vN on the second model be taken equal to N units

o.= N. (19. 19)

then the magnituoe of uN on the first model must be set equal to

NYR= Nyr. (19.20)

Unde-r conditions (19.19) and (19.20) the family of lines v= const on the first

model and v = const on the second model, built through the identical interval

AV,•AV. in totality form a grid of orthogonal lines every cell of which is a

curv linear square.

The grid of orthogonal lines with square cells are on the constructed models

thus:

1. Parallel to the second model to its contacts is connected a resistance of

N Q. With the help of probe and null-galvanometer ccnnected to the slider of this

resistor, the lines v = const are plotted. When plotting the k-th line v = k

the cursor is placed in such a manner so that the ratio of resistance branches

equalled k :(N--k). The following (k + I)-th line is plotted, preliminarily

shifting the slider 1 0 and establishing a branch ratio of (k+|):(N-k-I), etc.

2. Parallel to contacts of the first model is connected a resistance equal

to Nj=Nyr fl, and as in the first case, the lines v 1 = const corresponding to lines

J = const of the second model are plotted, moving the slider I Q for the construction

of each subsequent following line.

For measurement of NI and JN from the same sheet as the model is prepared a

strip of length I and width h (l- I0h), to the ends of which are soldered copper

contacts. Both models and the strip are connected in series and connected in a

circuit of direct current I. A compensator is used to measure the magnitude of

voltages uN, vN and v between contacts of the first model, the second model and

the strip respectively. Then NI and JN are calculated from the relationships:

I N , Nhr'. (19.21)

IN
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N, Nyr NA . Nd,-. Ni N -"vh I hv, ' ' (19.22)

Obviously mapping function 0 may be considered as the complex potential of an

electrostatic field in a region bounded by two conducting cylindrical surfaces

LI and L2 . In this case grid of orthogonal lines will be constructed by the method

outlined depict the electrostatic field of a cylindrical capacitor. Lines J = const

(vI = ccnst)will correspond to equipotential lines of the field, lines v = const

to lines of force.
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C H A P T E R III

CALCULATION OF ELECTRICAL AND MAGNETIC
FIELDS WITH THE HELP OF SIMULATION

OF CONFORMAL MAPPING

S20. Calculation of the Field of
a Charged Conductor

Calculation of the field of an isolated charEed cylindrical conductor reduces

to the solution of the Dirichlet problem for a function analytic everywhere outside

the conductor except at an infinitely distant point where the function has a

logarithmic sigularity. The sought field may be modeled by a field of current in

a conducting sheet, however, so that the simulation be sufficiently accurate it is

necessary to form the external contour of model in the shape of a circle, with

a bus of high conductivity soldered to it, and a radius 5-6 times greater than the

biggest overall dimension of the conductor cross section. When the radius of the

outer contour of the model is small it will strongly distort field of current in

it. To the outer contour circuit of the model, being the contour of the conductor

cross section, is also soldered a bus of high conductivity and between the buses

in passed a direct current. The model becomes bulky and complicated in manufacture.

Applying conformal mapping it is possible to simplify the model and to eliminate

the distortion introduced by the outer contour.

Let us assume that the cross section of a cylindrical conductor with charge T

per unit length is limited by corstour L. Complex potential of electrostatic field

4D(z) at infinity has a logarithmic singularity equivalent to the presence, a

charge -T of reverse sign. Let us depict region D external to contour L cn the

upper half plane of P with the help of conformal mapping O(Z)-t+iv. Contour L
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with constanit Value Of Potential On, it will '-a covre into th rea axis

point zm co with charge -T will cross into point Qo-j•o+ivo. The complex potential

of a charged filament-conducting plane system is written thus:

a-In2:u I (20.1)

If the mapping function is known .n placing it in formula (20.i), we obtain the

sought field

S(z) = 0,IQ (z)g

In the general case we do not know an expression for the function Q(z) however,

this function can be found by modeling as follows.

ab)

O| ,,r-O U a -A

c) d)

Fig. 26.

1. At any internal point of the cross section of the cylinder let us set

z= 0. Point z = 0 is conveniently selected in such a manner so that a circle of

radius R with its center at this point will as nearly as possible coincide with

contour L (Fig. 26a).

2. Let us map with the help of function --- the region D, external toz
contour L, onto region D1 , bound by contour Li. Here point z=--o,containing charge

-¶, will cross into point r = 0 (Fig. 26b).

3. Let us map region Di onto an infinite band of width h. We obtain the mapping

function by mapping as demonstrated in § 17. Let us cut from a conducting sheet a

80



nUodel in the form ol. reglon D . To two sections of the model contour remote from

each other we solder contacts in the form of round disks of small diameter in such

a manner so that the center of the disk falls on the contour of the model. We

Join the clamps from a source of current to the contacts and pass a direct current

tnrough the model. The complex potential of the current field in the model

W(C) will be a function conformally depicting region D. onto an infinite bane of

width h-. Here I is the current through the model. On plane (W) the part of

region Di, not occupied by contacts will be depicted on a rectangle of width h

and lesigth UN(UN - voltage between contacts of model). Sections occupied by contacts

will be mapped onto two semi-bands supplementing the rectangle to a complete bard

in both sides.

Let us take the electrical potential of one of the contacts equal to zero

(Uk = 0) and on the section of contour between contacts the value of the current

function also equals zero (J = 0) (Fig. 26c). Coordinates of point W0 may now

be measured on the model. For this it is necessary: a) to measure the voltage U0

between the contact where Uk = 0 and the point ý = 0; b) to measure the magnitude

of the function of current Jo at the point t = 0.
a

4. Let us map, with the help of function Q(W) # the infinite band onto the

upper simiplane. During mapping point W0 with charge -T will go to the point

go-P V 0~4i6 sin!,.6

The upper bound of the band will convert to the negative real semiaxis, the lower

bound - to the positive semiaxis (Fig. 26,). The function mapping region D onto

the upper hrif-plane has the form

Q(Z) Wl z)l)=eA-(). (20.2)

The complex potential of the sought field of a charged cylindrical conductor

equals

X X

er __ _"(Z) W In . (20.3)
VM



During calculatton of the static field the distribution of normal voltage on the

surface of the conductor is of interest. Let us derive the formula for voltage on

the surfacs.

Assuming that there is no tangential component of voltage on the surface of the

conductor, we obtain

Wa d- [I d d I dIz.~i~ (20.4)

Let us find the moduli of derivatives and substitute them in .ormula (20.4). On

the real axis

S-U
'a=F= Is= _-e(2o.5)

" _________I TV"____dQ!2xe I(Q-Q -)(Q ) as (8(p pv~t~)+

TUe . :

Here •U -- voltage between needles of a double probe connected to the model contour

on both sides of point U, q - distance between needles,

su i =-. -[ " % 2.9

Substituting these values in formula (20.r) we obtain

R AUI sin -,

U--U) x 20.6
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Thus, voltage En on the surface of a charged cylindrical conductor can be found

from a simple sheet model. As an example let us calculate by formula (20.10) the

voltage on the surface of a cylinder of circular cross section.

The function conformally mapping a circle of radius R onto a band of width h,

has the form

V !C-I-R h
C( +- -. 2(20.11)

Point C = 0 (corresponding to z=or) translates to the point

W.= W(O)= -In(--[)--/•-=/•. UO0. h (20.T T -UQ= . 10(20.12)

On the circle C-Re'*. Izl'=R"

,AU, I IR = Rh 2h h
:gI I IV I'--R 'ý 9R Icos 2 -- 1 +i sin 2-1= nRsin "

ch____ (U 0 -_f)=c nR"- hI /-I- (20.13)

I )Rro chin 1 +•-s= sine

Substituting thcýýe values in formula (20.10), we find

rR2 hsin!!ý sin 0
E 2. hnRsin6 = 22h" (20.14)

The well known result is obtained.

§ 21. Calculating the Magnetic Field of a rC
Machine yModeling of a Conformai

Mapping. Formul tion of Problem

Guring the design of dc electrical machines of expecially traction motors, it

is desirable to be able beforehant. to calculate the distribution of the magnetic

flield in the air gap of the machine, especially near the co.mmutation zone where

the form of the magnetic field very strongly affects aachine stability with respect

to flashes and circular fire on the commutator.

Of great significance is the distribution curve of the radial component of

induction along the circumference of the armature since it conditions the emf
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distribution curve between neighboring commutator plates. The latter determines

the inherent capability of traction motors to withstand overloads from the point

of view of possibility of appearance of circular fire.

For calculation and plotting of operating characteristics of a motor it is

necessary to know the magnitude of the working magnetic flux. It is possible to

calculate the flux or'y when the magnetic field in the gap of the machine is defined,

in particular if the distribution cure of the radial component induction along

circumference of the armature [25] is plotted.

The magnetic field in the air gap of a machine will oe consi~dered flat and

presented in the form of the superposition of two fields: a) vortex field created

by currents in the windings of the machine and not depending on properties of the

environment, i.e., such as would occur in the air gap of a machine built from

material with a permeance u t uO, equal to the permeance of air (it is called vor'tx

due to closure of part of the lines of this field within limits of the region of

the air gap of the machine and ambiguity of scalar magnetic potential UJr

char'4cterizing this field): b) field of magnetization of steel parts of the .echine,

i.e., such as would be in the air gap of the machine if all its steel parts were

made from an absolutely permanent-magnet material and magnetized by working currents

of machine, after which currents would be turned off. In P P it was shown that

j this problem can be solved it is known beforehand that the induction inside the

magnetic circuit of the machine is small (does not exceed I 1 /n2) and the permeance

of the steel can be taken equal to infinity. The magnetic induction B in the air

gap of the machine and the scalar magnetic potential U outside the cross section of

the windings with current is written thus:

U. + (21.1)

where Be is the component of induction of the vortex field of currents of density

6 flowing in the windings; B. is the component cof induction of the field of

magnetization of steel parts of machine: Um is the potential of vortex field:

p is the potential of field of magnetization.

Component of induction Ba and potential Um outside the cross s.ction of'



conduntors with currents can be found from the following relationships:

C(X.F)IM 1W.,I= IM n [j$In (Z-Zo) dS] (21.2)

S

BU: --•grad-it . (21.3)

Here Wm(Z) is the complex magnetic potential of the vortex field of current in

windings of the machine;

z is the complex coordinate of point at which potential Z-X+i&L; is defined:

z0 is the current coordinate of filament of current di=-6dS in cross section S

winding to current;

t is the current density.

Calculation of Wm(z) can be made by formula (4.13) with no great difficulty.

Considerably more complicated in the determination of components of induction

BE and potential T caused by magnetization of the steel. As was shown in § 4,

potential • in region of air gap satisfies the Laplace equation and its value on the

surface of the magnetic circuit p(t) can be found with an accuracy to the constant

from the expression

SC-U.(t) .4)

In general the region of the air gap in a machine is multiply connected, limited

by contours of the armature of stator and additional poles. On each of the contours

the limiting values of potential will be:

Cf (Q C. . (Q. q (4w = C=1- U. (IA
9 X = C'.,- U.(ti.,).

where the constants C., C, end C,,. are not mutually equal and can be determined

from the condition of uniqueness of complex potential •=•+iy. Calculation of

the field of magnetization leads thus to a solution of the modified Diricnlet

problem [28).

Let us determine the constants C. Let us assume initially tnat there are no

gaps between yoke and the core of the additional poles. Region of the air gap in

it is two-connected, syvmmetric with respect to the axis of poles and is bounded
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by the outr cntor ~of the stator and internal contour circuit of the armature.

Distribution of potential on them equals respectively:

9(Ss) = CS -U. (S.). 4(S) =-C- -U.(s.). (21.6)

Sections of windingb with currents and direction of currents in tnem are

symmetric with respect to the axis of poles, therefore, distribution of potential

of field of currents of windings along contours of the region U.(s.) and U,(scr)

satisfy the following condition:

U.S(-) = -U.(- s,); 6. (sC,) = -U,.(- sO. (21.7)

Using symmetry we define constants C and C CT. Let us map the region of the air

gap of the machine onto a ring. The contour of the armature will translate into

an internal circumference of radius r, the contour of the stator into an external

circumference of radius R. We assume that C=C(z)=elO is a function mapping region

of air gap onto a ring, (1)z = z being it reverse. Due to symmetry of the region of

the air gap with respect to the axis we have

IV'(S) = I V,'(-- S)l, (21.8)

where s is an arc measured along contours of the armature or stator from the axis

of symmetry. On circumferences of the ring the distribution of potential of field

of magnetization will cross into

(s-) = C- -U. Is- (0= C. -U(r (r. (r ) (21.9)

(s-) = C"--U- Is'(0)1 C-,- U 1 (R. 0) = (R. 0). (21.10)

Here, as the result of mapping, the average value of distributions f 9($Q)

and T(,s) do not chai,•e. Indeed,

rd0-Idl= [•'(s) ds (21.11)

and
L

-•- .• (, •.rd•= • U,, (s,) lV"(s.) rids+

L

+1(U.1(-- s.)IC'(--s•)ds] = 0, (21.12)



i.e.,

" " 0

and analogously

Lt~ ~ ~ ~k U(R)•=O '21.1li)

For any closed contour embracing the armature we have

( d (21.15)

Crossing to the ring Q == on internal the circumference (= r) we have

an Pe 1_ (21.16)

and, consequently, for any Q(r < R)

.-F .=f (21.17)

Hence, the equality

Sd eYO (21.18)

The magnitude of integral (21.18) does not depend on the order of integration,

therefore

~ide I A A~d f dq'1 de 4P. q~(R. 6)d
(21 .19)Ia

k 2n

- 4dO = C -- U.,, A ) d- Cm

00 ,



wnence, considering (21.13) and (21.14), we obtain

C.- Cc = 0,

i.e., constants C and C are equal and during calculation can be assumed to equal

zero.

Thus if in the machine there is no gap between the yoke and additional poles,

the limiting values of potential of the field of magnetization on contcurs of the

region of the air gap can be determined immediately from the expressions

S(t.) = - U (t,), (to,) = - U (YC'). (21.20)

Let us consider a quadripole machine with gaps between cores of additional

poles and the yoke. The region of the air gap in it will be six-connected and

upon mapping of it onto a ring cuts will appear into which contours of the additional

poles will be transformed (Fig. 27a, b). Since the mapped region is symmetric all

cuts will also be symmetric with respect to the axis of armature - the center of

symmetry of the region, both points of crossing of the contour of the core of the

additional pole with its axis merging into one point lying at the middle of the cut.

Distribution of potential Um(s,.,) on cores of additional poles, due to symmetry

of location of sections of windings, will satisfy either the condition

Uf (SA.n) U- (- s.) (21.21)

with a current in the windings of the main pcles, or condition

UMJ (s;.n) = Um (--SA.) (21.22)

with a current in the windings of the additional poles and armature.

Fg 27
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Fig. 27.



In the second case, as in the first, during mapping onto a ring potential

jumps on neighboring cuts will be equal in magnituae and opposite in sign, therefore,

during integration of expression (21.18) from r to R they are mutually compensated

and thus, as in case of the two-connected region of an air gap, we have

C. = C., = 0.

Let us turn to determination of limiting values of potential y(tx.) on the

contours of additional poles.

Mapping the region of the air gap onto a ring in such a manner so that the

contour of the core of the additional pole converts into the internal circumference,

the contour of the stator in the external circumference (Fig. 28) and applying

analogous reasoning when supplying windings of
Of s o- O the main poles, i.e., under condition (21.21),

we obtain the relationship

1' obtintd

ca. 4 n C, =0. (21.235)

When supplying the windings of additional

poles and the armature

U ($,..) U. ( -- $S2 3 (21.24)

therefore, we may not integrate expression

S(21.18) frc.n r to R since on cuts into which

Fig. 28. will be transformed the contour circuit of the

armature and contours of the remaining additional poles, mutual compensation of

potential jumps will not occur.

Using the symmetry of a six-connected region of air gap of machine and symmetry

of distribution of potential along the contour bounding, the problem of calculation

of constant CAX in the six-connected region can be replaced by the corresponding

problem in a two-connected region.

Limiting values of potential on the armature and stator are

9 (t.) = -U. (t.),

U.



Fig. 29.

From the symmetry of distribution of potential UM (t) and symmetry of region of air

gap with respect to axes of main pol it follows that the lines T = 0 coincide

with segments of the axes of main poles lying in the air gap. Making outs along

it we break the six-connected region of the air gap into four identical two-

connected regions. Let us consider one of these regions (Fig. 29). Limiting values

of potential on its contours equal:

9 (tP) - - U'. (f,), 9 (t%..) - U. (..).

For determination of the constant C with the help of results of S 14 it is

sufficient to perform the following operation: calculate by formula (4.13) the

value of potential Um(t) at points on the contour of region D; map region D

infinite sheetly onto a band in such a manner that every sheet of the Riemannian

surface is mapped onto a rectangle of dimensions h x N; transfer values of potential

Urm calculated from the formula (4.13) at points of the contour t... and t,., into

corresponding, during conformal mapping, points of boundaries of the band T° + ih

and T; find the constant component of the periodic potential difference on the

boundary of the band.

Constant C, is defined thus:
n

-* - IU. (T + ih) U, (r)J dr, (2.25)

and limiting values of potential of the field of magnetization are

S(t.) = -U Ur (t.), U (.a) -um (t.),

q) "lt .t, + ih) --U. ( I. d1--U26 .,)
N(t.) = I+-.(212

; 90 0

9(



In § 23 an approximation formula for the determination of C,.a. is derived.

§ 22. Calculation of Induction on the Armature
or an unsaturated Machine Not Having

Gaps Between the Yoke and Cores
of Additional Poles

In this case the region of the air gap of the machine is two-connected and

constants CR and CCT equal zero. Limiting values of potential on armature and

stator surfaces are immediately determined:

4p ,) = -- U.(t) ,V(A, T --U.. V ,). (21.20)

Solution of the Dirichlet problem, i.e. determination of potential in the region

from its values on the contour can be obtained by means of conformal mapping of the

two-connected symmetric region onto a band. Inasmuch as is necessary to determine

the value of induction only on the contour, it is sufficient to find only the

conformity of points of contours of these reg.ons. Conformal mapping of the two-

connected region of the air gap onto a band is performed with the help of modeling

as described in § 19.

Fig. 30.

Fig. 30.

We prepare from sheet iron or thin dynamo steel a model in the form of part of

the air gap of the machine between axes of the main and additional roles (?ig. .

Along the line of axes AA and BB we solder copper contacts and connect the modol

to a dc circuit in series with a strip of the same dynamo steel as the model.
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Fig. 31.

With help of zerogalvanometerr, connected in a potentiometer circuit, we find a
I 'I

series of points bk and b k on the lower AB and upper A B sections of the model

ccntour, starting from contact AA such that the potential difference of two-

neighboring points bAj.- and bh, b'-j.1 and b'k is constant:

Av = vh- v,, = const.

It is convenient 'n practice to divide the entire voltage between contacts AA

and BB into 100 equal parts, using for this purpose two resistance decades

connected as a potentiometer. In order to fix the found points on the model

contour, under •he model is placed a sheet of heavy paper, the model contour is

outlined in pencil and the points are inscribed directly on paper with a sharp

probe and numbered. Setting Av = 1 cm on the plane (,Q), we find that vk -

corresponds to a point on the axis of abscissas lying at a distance k cm from the

origin IQ = 0) and VUB' is a point at a distance N = 100 cm from the origin.

Measuring the voltage between contacts of the model u. = U,,the voltage between

contacts of the strip u and the dimensions of the strip L x H we find the width

of the strip h. Indeed, from the obvious relationship

it follows

u Hh= N n•H
u.L "(22.1)

Knowing the width of the band h, one can determine value of mapping function

-- U+i at any found point bk or bk. Thus, at point bk, lying on a section of

the model contour corresponding to armature, J = 0 and 9,=Vk k At point bk lying

on the section of the model contour corresponding to the stator, J = h and



tM
IPR7

On the plane (Q2) points bk of the inner contour of the region of the

air gap (armature contour) will correspond to points of the real axis J = 0,

points bk of the stator contour will correspond to points of the line J = h (Fig.

31).

For finding the normal component of induction on the armature it is necessary

to know magnitude of modulus of the derivative of the mapping function on the model

contour

where dt is an element of length of the contour of the region of air gap corresponding

during conformal mapping to an element of length dT of the band boundary. Replacing

infinitesimal increments by sufficiently small final ones, we can write

i L I= -t J,_Idt, At

This magnitude it is possible to measure sufficiently accurately with a galvanometer

connected to double probe with a fixed distance between needles equal to tAt.

Connecting the probe to the circuit of the model in such a manner so that point

bk (or bk) coincides with the mean distance between needles, we measure the voltage

between them ,v. The modulus of the derivative of the mapping function at point

bk (or bk) will be determined thus:

dt At AU (22.2)

Determining on the model the correspondance of points of contours of region of air

gap and band, calculating value of potential e(t) at points of contour of air gap

and transferring them to corresponding points of the boundary of the band, we obtain

curves of potential distribution on boundaries of the band T.(T). The normal component

of induction at point bn of the armature can now be fouri from relationship (11.8)

P0 ~ ~ ~ ! * j V-A (22.3)
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Using formula (11.16) we obtain

Bh (b ),(n + ih p + n

+1• (n + 0) 4-h Tn (n -- a) -. 2T (n) da +

4- T,,. (n + a + ih) + (p, (n -- a + ih) --2T, (n + ih) d
2h chku-, dak +•1 (22.4)

Analysis of the field pattern of various tyres of salient-pole dc Tnachires

has shown that for technical calculations it is possible to take a simpif•,ed

distribution of potential on boundaries of the band. The field potential C-,' poles

of the machine continuously changes o'rer the surfac-s of the armature and stator,

however, the peculiarity of configuration _fc the air gap, esveciaily its small

.magnitude under the poles and then its sharp growth between poles, !-afe 4r tb fact

that sections of the stator contour located under wdndings of poles, on which

occurs the biggest change of potential, during mapping onto a band are rractically

drawn into a point and the potential on them ohQnges in jumps sufficiently mall so

that it may be disregarded. Here it is possible to take t÷ie potential of the

armature equ&l to zero and the potential of the surface of the Dole applied to the

armature constant and equal to the ampere-turns of the pole coil actin, on the air

gap %./IW,.

Lat us assume that point on model b'p the last on the main pole, has the

number p, the followL-s point b',+, falls on an additional Pole. Then on th,. upper

bound~i'y of the band we may consider that the potential of the :ield of the main

poles ,(i ) has a constant value equal to the ampere-turns acting on the air gap

between points (-p+ih) and (p+ih) On the lower boundary of the band corresponding

to the surface of the armature it is equal to zero. Analogously, the .otential of

the field of the additional bands on the upper boundaxy between points [(p+I)+ih]

and ([2NV-(p+I)+ ih] can be taken as constant, equal to the ampere-turns of pole,

on the lower boundary - equal to zero-.

The distribution of Dotentiat ceused by current in the winding of the armature

also may be simplified and considering that the potential of the stator is equal
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to zero and the potential of the armature at point bn is proportional to the distance

along the circumference of the armature from the axis of the main pole to point bn

and attains a maximum equal to the ampere-turns of the armature under the axis of

the auxiliary pole

bm

If point b on the circumference of the armature were disposed evenly over the entiren

section between axes of the main and auxiliary poles then the distribution of

potential of the field of current in the armature on the lower boundary of the

band could have been presented thus:

Y N(n)j= "s, (22.6)

In reality points bn on the circumference of the armature are disposed

nonuniformly and taking on the lower boundary of the band the distribution of

potential (22.6), we allow a certain error. However, as will be clear below, it

can in sufficient measure be tliminated. Let us apply the method of superposition

and find the value of induction on the surface of the armature as the sum of

inductions with potentials only on the main poles then with potentials only on the

auxiliary poles and finally with a potential only on the a-mature. in order to

facilitate calculation we first demonstrate that the influence of the potentials

of the poles and armature located in the neighboring quadrant, on the magnitude of

induction on the considered section of the armature is insignificant. ro do this we

demonstrate that a potential of finite value distributed on the boundaries of a

band at a distance greater than 2h, from the considered point P, = n has practically

no affect on the magnitude of the normal component of induction B.0 ] at

this point. Let potential •i(v)-C be distributed on the segments (-00. n-2,8)

and (n+2h, oo). potential q,(T-+ih) =c 2 on the segments (-co, a--2h+ih) and

(n+2h+ih,co), then:

fu-nla= - l-ft(n + ih)-- 4,(n)! +

_+ :9 'a" M + V,(n -- a)-- i2), (n +
Ch +-ch I-- 1

r9



+hi. A l(n +a+ ih)-+T~n--a+ A)--2qp(n +ih)chk • da=

ch k -f- I

n 2_cdca + n 2cda _ ,cth. &a'
-2hyJ ch ka - I /l*Fj ch ka + I2

+1halo 2ce-2m! 2ce-• 2x • +C!2e-211•

S3,75 1D-3C, + C .

On tlhe other hand the normal component of intensity di, at point 0 =n, caused

by the distribution of potential %(I-+ih)=zc$ on the section of the upper boundary

of the band between points (a--2A) and (n+2h), has the fort:

lir +2-2cth--+ h th =--

CS + 8 I--- Cs (22.8)

Setting CS Ce + C2, we obtain

3,751 . 10-- 1Ldi - • . 0-j 2  (22.9)

i.e., the magnitude of the componen: of intensity (and, consequently, induction)

at point Q = n on the boundary of the band caused by the potential distributed along

boundaries of the band at distance greater than 2h from point n is less than half

of one percent of the magnitude of intensity at this point caused by difference of

potential at points n and n + ih.

Consequently, the distribution of potential on boundaries of the band beyond

the borders of section -2h 4 a 2h (a - T -h) cannot be taken into account without

loss of calculatior. n'eracy.

With the presence, in electrical machines, of a ratio of dimensions of diameter

of armature and gap above pole of magnitude N not less than 10 h, and the number

of points p, occuring on the main band lies in tne range of 0.6 to C.8 N. The

potential of the neighboring pole cn the upper boundary of the band, distributed
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Therefore, on the considered section O.n<N the first integral in formula (22.4)

differs little from zero, the second is equal to zero, and for the normal component

of induction cn armature at point bn from (22.4) we obtain

&N. N (22.12)

From expression (22.12) one may see tha, induction at point bn is proportional to

the accepted magn~tude of potential on it. .u'.tltuting in (22.12) the value of

potential at point b , equal tz . we obtain
n k

04P., Aw N 1;• ,.u9,c bn

t,,- h-by-.- " 13

If on the model the serration of the armature is disre"-'rded then that in the

derived formulas (22.10), (22.11), and (22.12) it is necessary to introduce a

teeth coefficient kz, which :an be calculpted from the formula

k.= b, + 108, (22.1L)

Here tz Is the magnitude of tooth spacing on circu..:erence of armature; b. 5s

the width of tooth on clrcumference of armature; t is the magnitude ,f ;zap at

point bn, for which is calculated kzn.

Taking into account the serration of the armature, for tne induction est,blished

at point bn on the surface of che armature of an unsaturated machine, designatec
3

by the constant e at =•awe obtain:

a) field of main poles:

Blbn)". 1 j=-- VN'I•rll . -O+ - (2--.15)

b) field of additional poles:

c) fiela of armature:

I WvV I/1W....c b,,

Alum k,,Iz b (221



between points (2N--p+ih) and (2N+p+ih) will be located at a distance

1>(2N-p--n) >20h-8h--1Oh,2h, from the point under consideration n(O .n<,N) and

consequently, its influence on the .n.agnitude of induction at the po.nt n may be

neglected. Let us proceed to a calculation of the induction on the armature. For

this purpose we substitute simplified values of distribution of potential in one

quadrant of the ai.- gap of the machine into the formula for the normal derivative

of potential on the ooundary of the band.

Field of main terminals. Potential rin lIWrin is distributed on the surface

of pole between points b' ?nd b'. On the upper boundary of the band this corresponds
-P

to a distribution between points (-p) and p. For determination of the normal
component of induction at point b cn the armature we use the formula (11.9):

n

D

- A N I Wr•,nk2 ch k(r-n) cos kJ + I-'
At u. j..,0 2ai j ch k(-n) + coskJP2

'-I At u. 2a ' chk( -- n)+l

-2h 2 ..- )I- -aU. -h 1ei I• l•rtnz th2( ,"- AVNfI/Wr.a

or A I r-: ( I

BlbQ).. ..•- jAt f 1'a. h + e (k. ). (22.10)

Field of additional roles. Potential • , .. is distributed on the surface

of a pole between points b,+, and b;_-_I. On the upper boundary of the band this

corresponds to a distribution between points (p + i) and (2NV- p- 1). Just as

when calculating the induction of the field of the main poles we have

B (b.)xa .W.f IVh k .n) 2v-p-i

IAvN I W,.,, I
=--i jl�At-' j u t+,.-, (22.h- 11

Field of armature reaction. The distribution of potential on the lower boundary

of the band is taken as follows:

N•t" - •, IWEMfJ:

:= • .=8



point b on the armature equals:
B a(ba) - B (b.),..n -T B (b.)Jt. ± 8 (bn),. (22.18)

Here bn is the distance from contact AA' to point bn measured on the model along

the circumference of the armature; p is the number of poing bp, last on the main

pole; h is the width of band h=N-H bn is the distance along circumference

of armature between contacts AA and BB of the model (Fig. 30); N is the number

of points taken on the contour of the model armature; u and u is respectively,

voltage measured between contacts of the model and a strip of dimensions L x H;

1v is the voltage between needles of double probe applied to the model contour

at point bn; At is the distance between needles of probe;ni
A

Taking a simplified distribution of potential we thereby facilitate calclation

of the magnitvude of induction: the necessity of calculating the eddy component

of induction on the armature i,; eli-inated since an excessive potential difference

between corresponding points of the armature and stator is knowingly taken.

Let us consider, for instance, the field of the main poles. Ps follows from

the law of total current, potential difference of the field of magnetization

between corresponding points of the armature and stator at the section of the

armature under the pole is eaual to tne total amrere-turns of the role minus the

eddy potential drop Um in the gap between points. it is accepted that this

difference is equal to the total ampere-turns of the pole, i.e.,

IWA-t,•-l.••- U n) + IU. (b,) -- U.(bA)

-I i(b- (b.)l + [Ure (b.)- U. (b.)]. (22.19)

Determining the normal component cf induction of the field of main poles on the

armature according to formula (22.l:) for points under the pole, i.e., for

n <<p we c'tain

1+(N) I
) -- atu h a T-o+ 1

"I Tt(U0 ) - U-. (b,,)J B. (bj) + B.Ab.).

AtI---h



The first member of the right half of equality (22.20) constitutes a main part

of the magnitude of the normal component of induction of the field of magnetization,

the second member may be considered equal to the normal component of induction of

the eddy field of current in the pole windings. We reach a similar result when

examining the field of additional poles.

Thus, formulas (22.15), (22.16), and (22.17) make it possible to determine the

magnitude of total induction on the armature which includes both the component of

induction of the field of magnetization and the component of the eddy field of

currents in the machine windings.

The method presented for calculation of the magnetic field of dc machines has

been repeatedly checked experimentally and confirmed by direct measurementŽ of the

magnitude of induction at points on the armature surface. For example we will

give a comparison of values of induction, at points on the armature of dc machines

of the firm AEG, type HN-ý10, 230 V, 13C A, 30 kW, 1100 r/min, measured and

calculated by the described method, directly. Measurements of induction at points

on the surface of the armature were made by the ballistic method. For this purpose

on surface of armature of machine were glued four shifted messuring coils embracing

each tooth-groove of armature at 9C0 intervals. Luring rotation of the armature

with help of a turning attachment the measuring coils are moved along the

circumference.

During transmission current along windings of machine, flux, occuring on a

tooth division of the armature, permeated the circuit of the measuring coil.

A change In direction of current in the windings of machine led to a change in

direction of flux permeating tne measuring coil and flow of induced cnarge through

tne ballistic galvanometer. Deflection of the galvanometer beam made i- possible

to measure the magnitude of flux penetrating the measuring coil and to determine

the mean value of induction on the surface of the armaturp at the coil location.

The distance along the surface of the armature between axes of neighboring main

poles was divided into forth approximately equal parts. Measuren.nts of fluy

were made with coelcidence of the axis of the meas,,ring coil with the points of

division. The turning attachment ensured the possibility of turr. of the armature

over an angle greater than 900. Induction was measured during tran3mission of

current along each of the machine windings separately (through windings of the

100



Fig. 32. KEY: (a) Field of additional pole; (b)
Field of armature and additional pole; (c) Axis of
auxiliary pole; (d) Field of main pole; (e) Resul-
tant field; (f) Axis of main pole; (g) Field of

ermaturý; (h) 1,/m 2 .

main poles additional poles, and armature), through til windings of the machine

simultaneously and through two windings - armature and additional poles. The

results of measurements are given in the form of curves depicted in Fig. 32 by

solid lines, Experimentally measured values of induction were collated with those

calculated by the method presented. From a sheet of dynamo steel of thJckenss

0.5 mm was prepared a mode] of the cross section of the region of the air gap of

the machine in a 3: |scale and the band in the form of a rectangle (Fig. 33).

The model is connected to a dc circuit and on sections of its contour points are

contacted with a probe which correspond, during conformal mapping, to evenly

spaced points on the boundaries of the band. At each point values of the modulus

of the derivacive of the mapping function were measured with a double probe.

Coordinates of points on the expanded circumference of the armature and the value

of the modulus of the derivative of the mapping function in them are given in

Table 1, where S is the number selected for designating points on the armature;
I!

bn is the distance measured on model from contact AA to point of number n along.

the circumference of the armature.
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[Values measured on model: ik. - 16.45 mV, p - 71,

N = 100. Values measured on the band (Fig. 33):-"

L = 201 mm, H = 20 mm, un = 7.12 mV, and I = I A,

low h = ~AN!L-= 4,31. a - ' -e-7"- 2.073.

Since the magnitude of the gap under the main pole is not

identical, the coefficient kz was determined for every

S- point bn. Here we proceeded from the following

considerations. Considering that under the center of the

JZ 44ai@ main pole on the model the field of current is uniform

-- [., conductivity of the tube of flux between lines v = 0

and v = I equals

b, I

- where t is the gap under the center of the main pole.

Since conductivity of all tubes of the field of current

on the models are equal, for tubes between lines v =n +1

cI• a@r-ai and V n- we obtain

Jbn+ -1-b L.Jb 2
i8

whence

bni b4 b, --.

1 or, assuming ,b.+t-bij=jAti,2=Iv-,

k. S.
_______� 8 J U .J tb,+ 106,

.H Here tz is the tooth pitch (67.5 x 3); b is the width

of tooth along the external diameter of the armature, 1- R- & R (4o.5 x 3).

Values of ( 'fficient k at different points on the

armature are given in Table 2.
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Table 2. __ t

0 11 is 6 1.16 11I 1.085 I 16 1.0
1 1,18 7 1.148 12 1.05 17 1,0
2 1,1 1 8 1.13 13 1,0 18 1.16
3 1.18 9 1,12 14 1.0 19 1.18
4 1.18 10 1. j 15 1.0 20 11185 1.175

Table 3.

- - B- -. s B SIB.
S I a, S I a, l lB.! I

0 1730 6 151529 11 760 16 46
1 1730 7 1440 12 510 17 16
2 1730 81 I12 13 283 11 8
3 1730 10 91090 15 190 195

4 1730 109 100 15 4 .19 20 405 1720

Table 4.

S B. B S J S _
0 0 6 0 if 12 16 8521 0 7 0 12 61 17 17952 0 11 8 0 13 IM5 8 228o
3 0 I 9 0 14 234 19 2610

410 10 21 15 Soo 20 2670

5100

Table 5.

SJ B. S 8, ISS. B

0 01 6 670111 576116 620
1 120 I 7 710 I 12 470 17 1240
2 250 I 8 710 II13 367 18 1660
3 370 9 680 ' 14 340 I19 2030
4 485 10 630 15I 420 20 2220

5 600
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Fig. 33.

Value of induction (in Gauss) of the field of the main poles at points r,:l

the surface of the armature of an HN-300 motor calculated from formula (22.15).

where t-o=--,256, a=2,073, p=71, 1W,.=600' A are given in Table 3.

In Table 4 are given values of the induction of the field of additional poles

at points on the surface of the armature of an HN-300 motor calculated from formula

(22.!6) for /W,.n900 A.

Values of induction of the armature field at points on the armature surface

of the same motor, calculated from formula (22.17) for IW,=844 A are given in

Table 5 and results of calculation -- in the form of hachured curves on Fig. 32.

§ 23. Calculation of Induction on the Armpture
of an Unsaturated Machine with Gaps

Between Yoke-an-dCores
of Additional Poles-

As already indicated in ý 21, symmetry of the six-connected (in this case)

region of the air gap oi the machine and symmetry of the distribution of potenti.al

along contouxs bounding it, permits finding the line of equal potential, not

calculating the field, make cuts along it and thereby reduce the problem to the

calculation of the field in a two-connected region.
Calculation of the field when feed windings of the main poles. In this case

10.1
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and limiting values of potential on all contours are immediately determined

U, (Q -- 9 (ter) - U- (tr)
ff(x, - -- U. (t,.0).

Segments of the axeP of additional poles, lying in the region of the air gap,

coincide with lines T = 0. Making four cuts along segments of axes between the

yoke and cores of the poles (Fig. 27), we make region of the air gap two-connected.

Here the limiting values of potential q on the entire contour, including cuts,

are determined, the problem being solved Just as in ý 22. The form of the model
t !

and location of contacts AA and BE on it for electrical modeling mapping the

function in tnis case are shown in Fig. 30. Calculation may be made according to

approximate formula (22.15).

Calculation of field with supply of windings of auxiliary poles and armature.

in this case

C. =CT 0

and limiting values of potential on the armature and stator are:

From conditions of symmetry it follows that the lines T = 0 in this case coincide

with segments of axes of main poles lying in the air gap. Making cuts along it,

we split the six-connected region of the air gap into four identical two-connected

regions (Fig. 27). For determination of constant C..n. we use the same model to

obtain conformal mapping as when calculating the field when feeding windings of

the main poles, but contacts to it we connect along segments of the axis of the
I I

auxiliary pole BB and DD . Constant C2.n. can be found from formula (21.25)

although, using the peculiarity of configuration of the air interval of dc machines

and peculiarity of potential distribution along its contours, the expression for

C... may be simplified. Let us demonstrate this on the example of calculation

of constant C for traction motor INB-4og/840 (HB-409/840).
.n.n.

Let us determine constant C when suprlying windings of the auxiliary

poles. The contour of the section of the air interval region and the cross section

of the winding with current are shown in Fig. 30. The potential of the field of

1611-



ca'rent flowing in winding3 of auxiliary roles we define in the following way:

we divide tne cross section of the winding into n = 4 rectangles and replace

each of their axes with a current -oinciding wi~h its center of gravity. Then

for potential Jm(z, y) we have

4

U.=: ,U11, (23.1)

where each of po'tential Unk is created by eighth current-car~ying axes located

at points of the eight cross sections of the windings of the additlonal poles

symmetric with respect to the axis of the armature. Designating coordinates of

these points Z4l. Z, .... for potential Uink we obtain

IMAVI (z--z;,) (z -- z') (z - oV-z"(--zko 231.I,,, ). 8n (z-Q)(z--Z(z -- zs)(z-z,,) (2.2)

or, using the symmetry of location of the axes, the current-carrying after

transformation we obtain

1• 4 (r(.41--) sin 20 cos 2y
U* (Q. y) = arctgj8-f- _ 4O•- 2 - (23.3)

Here rk== Rk and 9 k are the polar coordinates of the current-cark-'ing axis

z-Ri %-'; Q and -' are the polar coordinates of the point at which is determined

potential z----- . Angles ek and y are measured from the axis of the additional

pole. For the potential from the entire current in windings of add.tional poles

we have:

UQ ) " 4r!( -1)sin2, coc2yU. (e. Y) =+- ! rt
t4+I+2 r(cos 4% 2 cos' 2y) (23.4)

From theý drawing of the mo:or it follows:

R, = 3. c; R2 = 42.3 'x; R, 46,7 cv: Ri 51 ca;

01 = 8°18'; 2 = 7o34'; 03 = 650'; 04 = 6014'.

We connec' a model of half the considerel two-connected regicn with .ontEct

FiB and DD to a dc circuit (Fi.g. 30) and plot N points on each section of it--

contcur- through equal values of voltage drop ,v. We select a series of or-.:s

11f;



Table 6.

inLI 1W i.lYr UQ Q V-

1 34 o* 95.5 0.84!1 9 41.4 r53 I 63.5 0.554
2 34 2 a1 0.643 10 45.3 4e5' 62 0.49
3 34.1 4"10' 77 0,853 I t 47.1 3:55' 60 0.416
4 35,3 I4°10' 0.826 12 49 3045' 0.34
5 3.5,5 3*50' 70.5 0.8!5 13 51 r35035 0,27
6 37.7 40504' 69 0.797 14 52.5 3030M 0.228
7 39.6 V40' 6;.5 0,72 15 52.5 1045' 122 0:241
8 41.5 4030' 6,5 0.64 16 52,5 0- 0 0.243

on the external and internal contours of the region and from formula (23.4)

calculate the magnitude of the magnetic potential in them. Coordinates of points

on the contour of the air gap region, coordinates of points :orresponding to it

on boundaries of an infinite band and ;aiculated values of magnetic potential Um

on them are given in Table 6, (contour of core of additional pole J = ) and

Table 7 (external contour of region J = h). Curves of potential distribution

UmI(T). UmI(T + ih)and U,",(T 4-ih)-- (() are shown in Fig. 34, plotted along points

on the boundary of an infinite band (04CvN) . MeasurenmentF on th. -•cde'l give;

h = 7.15, N = 95.5, 2kN = 8-). For determination of constant C7,. we use equetion

(14.30). Determining the area of curve UI(@+ih)--Um,(T) in the interval

(0 < T N). we obtain S = 33,571W and consequently

S S 33571W 0.3521W (23.5)f..= = 975,5 (2=5

Replan-cg curve U,,u(-+ih)-U,.,(T) with two iectanglos as shown by t.e d tte

line in Fig. 34, it is easy to derive a simple rule fc- approximate determination

of the magnitude of C when siupply.ng windings of the auxiliary poles equiv.lent

to it in area.

Table 7.

___ _ : I I __ _

""33 0 95.5 0,143 9 48,5 19040' 63.7 0.02
33 430 78 0.13 10 50,5 140501 61,5 0.05

33 9 71 0,1031 1o 53,7 11o51 58 0,087
4 3 1307'01 68.7 0,076 02 53.5 O.157

5 33 20''6. 003113 t53,4 5' .53 017
6 5 18040 67 0,042 14 53.2 330 07
7 2M'05" 65 0D0042 15 53.2 1045,j 0 .205
9 46.7 24040, W',5 1-0.005 16 53.2 0 0 0.225
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Fig. 34.

Indeed, the change of potential difference U0,,,t(C+Ih)-Umi(•) occurs. as can

be eenfro Fi. 3, bsicllyonly on the lateral surface of the core of the

additional. pole under the coil with current. :.•erefore, the width of eiery

rectang..e equals the number of points occurring on half of the contour cf the core

of the additional pole.

Taking into account that the peculiarities of form of the curves shown in

Fig. 34 are not specific only for the considered motor NB~409, but general for all

existing designs, determination of CO.n e ?r a dc quadripole machine may be

performed in the folloding way:

1) determine potential difference on the axis of the additional pole between

the yoke and core

-47

to 0 X +0 SO~ 0 ' (g23.6)

2) determihne potential difference on the axis of the additioja! pole between

the armmture and core

,-Um,,t(M + j1)-Um, (N)-- /w-um(R•o, 0)-Um,(Q.,. 2,o00); (23.7)

3) attempting a mapping, find the nurner of the point on the iddle of the

core length v = q, considering v = o a-t the intersection of the pole axis with

the yoke (in our example q 63).

Then constant Co.n. will be determined thus:

C. N -- +.

N (23.6)
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Fig. 35.

Check:

C e, = 0,0181W . qz 0.9841W , C a., 3,3471W .

We determine constant C,. for motor z0-409/84C with tne armature winding of

macnine powered.

Let us assume thpt the current in the armature is distributed evenly on the

surface of the armature in a thin film, the direction of the current being

different on each quadrant of the circumference of armature. Distribution of

current is shown in pig. 3=. ?omplex potential d. at point z=Qe'v from four

filaments of cu-rent in symmetrically lo.ated points z., z 2, z3, z4 is

dQ = dl-In (23.9)

Utilizing the condition of ,-ymm'-,try of distribution of current over tf-e

armature, integrating -ind eliminating the imaginary part from the expression fcr

0, we obtain

Ul, ((2n-. ) 23.1C)

on su-face of armature Q= R and

41 cos 2(2n -. 1 y

U. (R,(2PNO.



(

1 0 ,445 , 5 0 .,35 9 6. M, 13 (1.171
2 0.44 6 02 0 ,25 14 016!5

3 o .42 7 0:281 11 0,2 2 is 0.163

4 0.391 0.261 12 0,188 16 0.1615

where I is the number of ampere-turns occurrirg on the section of the armature

between axes of neighboring - (main and auxiliary) - poles. The distribution of

potential (23.11) on the developed circumference of the armature represents

expansion into Fourier series of a periodic Isosceles triangle.

Table 9.

pon 1IF oimt 1W ; I T

1 0.5 5 0,25 9 0.:38 13 0.157
2 0,45 6 --0.235 O 10 0. 5 '4 C. 1588

--0,1476 1 0.149% 15 0,;596
4 0.3 a -,3 12 0. 1 16 0.16

Results of calculation of values of pcential at the came points of the

contour as in the preceding example are given in Table 8 (contour of core of

additional pole J = 0) and Table 9 (external gontour of region .J = h).

Curves of distribution of potential Um(.1 UlAI(T iht a U. V +•a{l?-ih) U"l( )

"are shown in Fig. 35, plotted along on the bcundary of infinitp band (O,4 V•,).

We determine the constant C from formula (14.30). Deter::ning the arean .)I •

of' curve Uv(fr+ih)-Umi(?) from the drawing on Lhe interval (0• f<N•.we obtain

S = 25.61 and, consequently,

c _ S 25,611
;* 0 2 W .( 23 .1 ?)

RepLajing curve Um1(T+h)--•,,(T) by a rectangle or equivalent area, as it was

shown by the totted line in Fig. 3', it ig easy to d6rive a simple rule for

approximate actermination of C, whun the arractre winding is fed. Tr.deed, as

can bp seen from Fig. 36, the width of the rectan~le is equal to the numbr," of
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Fig. 36.

points occurring on the cross se-tIcn i• n i-' •noui• of the r.^del "-rrebponding

to the armature of the machine. The height of the r-" angle is -qual t3 the

potential differcnce between the polnt on the ba-e of t,..- coro of the auxiliaryf

pole at P distant from ýts axir of i/-1, of the base a.A corresponding to 'ts point

on the armature. The given relationships are g-neral for all designs, therefore,

deternination of C when fetd2ng the armat.re windinC of a qua-dripole dc machin-

may be made in the following way:

1) determine the potential di 1 .feronce between the armature and core at

ooints removed from the axi. of the adoiticnal pole b. a distance of ' he baS-

of the core of the additional pole:

I ( I- I- )
where e, is the angle between the axis anl angolar point of the base ef the core

of the additional pole;

2) attempting a -.arppng, find the number o.' Ohe roint of inter,-tion of

the axis of the main role with the armatur-, v = p, considerin, v = C at the

Intersection of the axis of the aiditional poýl with týe yoke fin ouf exa:ýle

p = 67.5). Then constant C wIll be det=r.mined thur:

N

Check. -,=0,-1, Cx.n = 0,268511.

Knowing the limitAng values of potential of the field of :rgne.:ization or:

the -orntour of the core- of the additiona'. polo, the •omponent of i•d.uction r.or.-l

i ---- --



tcý th. ar-m-ture can be determined just as when calculation the field when feeding

the windings of the main poles: , ; to make four cuts along seasents of the

axes between the yoke and cores of the additional poles and to thereby, convert

the six-connected region of the air interval of the machine into a two-connected

one. With conformal mapping (Fig. 30) the section of the model contour corresponding

to the line of cut will practically reduce to a point and the change of potential

on it will lead to a jump. Values of potential T,(¶) on all points of the boundaries

of the band will consequently be determined.

Knowing the value of C.17. it is simply to derive simple approximate formulas

for the magnitude of induction of the field of additional poles an6 reaction of

the armature at points on the circumference of the armature of a quadripole

n.achlne having a gap between the cores of the additional poles and the yoke.

Field of additional poles. From Fig. 34 one may see that constrntum C

displaces the curve of potential distribution on the core of the pole such that

the r•otential difference on the axis of the pole between the tip and the armature

decreases to a magnitude equal to 1W - C and remains almost constant on

the entire surface of the tip lying opposite the armature (oatted curve In Fig.

Taking, as was Jone in C 22 the potential of the armature equal to zero, for

tn- inductlon of the field of additional polh at points of the circumference of

tne armature we obtain:

& N I 'fxI V - C o..l (23.15)

where P is determined from expression (23.8).1 .. "

Fielo c4f reaction of armature. From Fig. 36 one may see that the constant

Cz.r. displaces the curve of potential distribution on the core of pole such that

the potential difierence on the axis of the pole between the tip and armature

decreases to a magnitude equal to IW7,a•c'-Ca..where the magnitude of potential

on t he antire surface of the tip opposite the armature is almost unchanged

(dotted curve in Fig. 3r), whereas, the potential on the armature decreases

linearly.



'TL'!Ung in the a.amme way &e was done in • 22, tne potential of the stator to

equal to zero, the potential of the armature &t point bn is proportional to the

distance along the circumference of the armature from the axis of the main pole

to point bn and equal to

(b)b, ff,..
Sb [(23.16)

and, finally, the potential of the tip of the additional pole equals C For

the magnitude of induction of the field of reaction of the armature at points on

the circumference of the armature we obtain:

B~4=--~j 1T[ + (23.17)

where C is determined from expression (23.14). Here the designations are the

same as in formulas (22.15)-(22.18).
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CHAPTER IV

INTEGRATORS FOR CALCULATION OF FLAT FIELDS AM) THEIR APPLICATION

§ 24. Electrointegrator for Simulation of Particular
Solution of Poisson Equation

Calculation of the static field in an isotropic medium reduces solution of

the boundary value problem for the equation

Aq =f(x, y). (24.1)

As a rule density of field sources f(x, y) is different from zero only in

a limited region. On the remaining plane q(x, y) is a harmonic function. The

contour of the investigated region usually is the boundary between two distinct

media and the boundary conditions are determined by their properties. In

individual cases, for example when calculating the magnetic field in an air

interval of an electrical machine or when calculating the strength of a ti.isted

prismatic rod, lie right side of equation (24.1) is known and calculation

immediately reduces to a solution of the boundary value problem for the Poisson

equation. In other cases, for instance when calculating the distribution of

density of sinusoidal current in a cylindrical conductor or the magnetic field

in steel component an electrical machine, c(x, y) satisfies a more complicated

differential equation the right side of which can depend on the sought function

and its derivatives. However, even here sometimes can be obtained result by

means of solution of a series of boundary value problems for the Poisson equation

[27].
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It is well known that any function which is a solution of the boundary

value problem for the Poisson equation can be presented in the form of sum of the

harmonic functions cp1 (x, y) determined in the given region by boundary conditions,

and the function 92 (x, y) determined on the entire plane only by the distribution

of sources f(x, y). The function 92 (x, y) carries name of particular solution

of the Poisson equation, Analytic solution of the boundary value pr blem for the

Poisson equation in general is very complicated and requires great expenditure of

calculating labor and, moreover, does not ensure the accuracy necessary in practice.

Therefore it is of interest to develope devices which model a solution to the

problem. A*'wever to prepare a universal model allowing a change in the contour

of the region and boundary conditions on it and at the same time ensuring the

necessary accuracy is impossible. The manufacture of a model for every

concrete problem is very complicated and costly.

In this connection a solution of the boundary value problem by complex

means combining analytic calculation with simulation of the most complicated

indiviaual labor consuming mathematical operations is rational.

Let us clarify what has been said with an ex.mple.

It is known that a solution of the Dirichlet problem for the Poisson

equation can be obtained using the following mathematical operations:

I) considering the region unlimited, find potential function q 2 (x, y) with

a given distribution of density of sources f(x, y) in the region, in other words,

find a particular solution of the Poisson equation;

2) having determined value of q2 (t) on the contour of the region, subtract

them from the given contour values

9 (t) -'P(t)--p()

3) considering 9,(t) as boundary values of harmonic function p1 (x, y),

find this function, i.e., solve the Dirichlet problem for the Laplace equation;

4) combining T,(x, y) and P2 (x, y), obtain a solution to the problem

Analytic fulfillment of the first and third operations of the given algorithm,

being very complicated and labor comsuming, are expediently modeled. Remaining

operations cause no difficulty. Let us consider a device which models the

particular solution of the Poisson equation and will clarify on what the accuracy

of simulation on it depends.

11 ;



As is known potential function q2 (x, y), satisfying the Poisson equation

on a plane is determined by the expression

Im~ ff (x' IV-) 1 20)-d8]) (24.2)

where z. =x 0 + iyo is a complex coordinate of element dS In the region S,

filled by sources of density f(x, y), over whose arec integration is performed

z = x + iy.

Analogous expression will determine the potential of the dc field in an

unlimited conducting sheet with constant unit-surface conductivity Y if to

every point of section S of the sheet is applied a current of density b = yf(x, y).

Consequently the sought function T2 (x, y) can be modeled by the potential of

a field of current in a conducting sheet.

So that the potential of the field of current in the sheet yields a particular

solution of the Poisson equation it is necessary:

I) that the sheet be uniform and infinitely large;

2) that the distribution of density of current applied to the sheet

correspond to the f(x, y), standing in the rigl'. side of the Poisson equation.

it is not possible to prepare a model satisfying these requirements.

Dimensions of the model are limited and distribution of adjustaole sources on

it can only be discrete. Besides, at the place of connection of the source

homogeneity of the sheet of model is disturbed. All this causes an error

during modeling. Let us estimate the magnitude of error and clarify the

possibility of reducing it.

Obviously the modeling error will depend not only on the dimensions and

form of the sheet but also on those boundary conditions which we assign to its

perimeter. If the region filled with sources can be combined with section in

center sheet and in it predominate sources of one sign then it would be to

select the model sheet in the form of a circle and its contour attach a contact

bus of great conductivIýy using it to draw current from the model. Really,

with such a distribution of sources on an unlimited plane, according to removal

from sources the lines of equal potential will approach concentric circles and

if along one of them is cut a sheet, rnsuring the former value of potential on

the line of cut, the field of current in the sheet will not be changed. Inasmuch

as at a finite distance from sources the lines of equal potential in reneral
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introduce an error.

We will consider that the model is made from a uniform conducting sheet

in the f.orm of a circle of radius R, the central part of which (circle of radiua r)

is filled with adjustable sources of current connected to individual points of

the sheet. On the eircumference of the sheet is soldered a bus of incommensurably

large conductivity with help of which current is removed. If sources of one

sign evenly fill inner circle r the equipotential line will coincide with the

boundary of circle R and th3re will be no distortion of the field on the model.

The biggest distortion of the field induced on the bus by charges will

occur when the sources are equal in magnitude, have opposite signs and are con-

centrated at two diametrically opposite points on the circumference.

When solving problems in the majority case it is required to find not the

actual function p(x, y), but its derivative - the gradient. It is considerably

more difficult, to ensure the necessary accuracy of s~iulation of the gradient

of a function than the same accuracy of function modeling. Therefore the error

during simulation will be estimate from the ratio of moduli of gradients of

field potential produced by charges induced on the bus, and the field of sources.

Let us assume there are two sources - positive T at point (r, 0) and negative

T at point (-r, 0) (Fig. 37). The complex potential of the field of chese

sources on an unlimited plane was equal to

W(Z) =--, In_-'-. (432x z-r

but the charges induced on the bus equalize the electrical potential of the

bus making it constant, and distort the field within circle R.

Applying the method of mirror images, we

find the complex potential Wl(z) of the resultant

field. The field of charges induced on the

bus of inside circle R is equivalent to the field

- of two imaginary charges ±T, located at points

-- -, � )and ,0 . Consequently

Vd~m V~ rzr (24.4)
z+

Wt Z--1jY I:, p l

rj
Fig. 37.



The potential of th~e distorting field of charges induced on thie bus has !

the form •

+

The modulus of the gradient of this potential will be written thus:

the modulus of the gradient of field potential of sources

-~~~~~~~~ -. I '- -S------

Magnitude of relative error (Z: =• e

6=•mAUl:R 0i•-.rt

The quantity assumes maximum value on the c ircumference when bus h.

M - I -100%.

In problems encountered in practice it is usually necessary to define the
the function in a region whose dtmensions exceed by 3-w times the dimensions

of the region o-cuphed by the sources. Consequently it is possible to take

The bogfest error in the considered reg2of is determined by the expression

S/ " ' \' I 1 ) C $ 2 1 ) "

or 29r ~ +(Ifý 6-(R>4 (24.8)

So that the error does not exceed a permissible magnitude it is necessary

" ~rth select an appropriate value of the ratio e . The radius of the section of the

model filled by sources, from a con n of convenience of simulation and

measurement, will be taken equal to 15 cm. Taking the bngiest permissible

magnitude of error d equal to 3%, we obtain

119•
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v4,R-- 23, Ir 346cex,

i.e., the diameter of the sheet of the model must be made equal to 7 m.

It is natural that such dimennions of the model are totally unacceptable,
and all the more so that the working part will be only the ctrele Q = 4r.

erro r part in wri cirle - ring(4r <Q4C 23r) - serves to decrease
•" the error in wurking circle.

Dimensions of the model may however be reduced to the dimensions of its
working part if one were to replace the external nonworking ring(4r C QI4 23) with
its conformal mapping realizing the function [11]

As a result of mapping circumference Q 4f (Fig. 57) will pass over to

a circumference of the same radius

(4)' 0

CircumferenceQ-R-23r. will also pass over into a circumferenca of radius

0.7r

(4. )' Olr

Consequently the external ring will be mapped also on a ring turned about

the real axis by 180° since instead of z in formula (24.10) stand T, the inner

contour of the mapped ring passing over to the outer contour and conversely.

Let us imagine now that the mapped ring, as also the circle, is prepared

from a conducting sheet. Let us put the ring under the circle and connect

them electrically along circumference Q-4f. To the internal circumference of

the ring we Join a bus of infinite conductivity. -'he obtained ' "el of a

two-sheet surface with sources assigned i3 circleQ<4r may be considered as

region of existence or a complex potential W11(z) the current field equal in the

circleQ<4rto the complex potential W1(z) of the field in the initial great

circle Q-R with Just such a distribution of source in it.

Let us demonstrate this. Due to the electrical connection values of

complex potential WM(z) on points of both circumferences Q - 4r of the ring and the

circle will be equal and consequently W,(z) analytically will continue on the

ring lying under the circle up to an internal circumference Q 0.7r where its

imaginary part - electrical potential UM - will take on a constant value

Uu-. WIm . (0 = const.

16(0



This is explained by the fact that there a bus of infinite conductivity is attached.

Let us map ring 0,7r<Q 4r with the help of Inverse function

ZLr (4,)Y (4r,,),e

onto an external ring 4r < Q <. Here points of the internal circuhference of

the ring will remain coincident with points on the boundary of the circle. Values

of complex poten e.al at points of both ringr corresponding to each other during

conf•ermal mapping are preserved, consequently, they are equal to the W.(4&eý

on superimposed circumference •=4," of the ring and circle. Hence complex

potential of the current field in the external ring will be analytic continuation

of the complex potential of current in the c.,rcle. On external circumference

Q=R the imaginary part of W.(z) will be constant.

Comparing complex potentials W,(z) and W,4(z) in the entire region -

circle R, - we notice that each of them is completely determined by an identical

distribution of sources in circle R and constant value of its imaginary part on

the boundary of the region. Here, as follows from the theorem of uniqueness,

W4 (z) and WM(z) can differ only by a constant value which may be set equal

to zero: to zero:WN (Z) -- W, (-?.) + C.

Such a conclusion permits preparing a model for which, during modeling, the

error caused by limited dimensions of the sheet will be arbitrarily small.

For this it is sufficient to make the radius of the internal circumference of

the ring, and hence the radius of the contact bus sufficientlysmall. We select

the internal radius of the ring Lo equal to 2.5 cm. This corresponds to an outer

circle circumference of R = 1440 cm. The greatest error t. on the contour of

the working circle of the model Q-4r=-0.6m amounts to 0.17%.

The modeling circle and ring are prepared from a thin uniform metallic

sheet (manganin of thickness 0.25-0.3 mm), then they are put one on the other

and are welded along the circumference by contact spot welding. It necessary

to ensure uniform and sufficiently frequent location of weld points along

the circumference of the sheets. Between the sheets is laid a thin insulation.

Connection of sources to the circle is accomplished throu3h holes in the ring

by contact screws of small diameter (2 ro=2 mxl). The sources of current are

121
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rows along t:o circumattrence of the model. The supply unit is located under the

model und consists of a stabilizer, 220/5 transformer and se.enium rectifier.L Total current in the sheet is 200 A.

§ 25. Modeling Errors

Influence of discrete distribution of sources. An assigned, continuous

distributlon of sources on the model is replaced by discret.. cupply of current

to separate sections of the sheet. Sources of current are joined to the central

circle r of the upper sheet of the mode. by means of brass contact screws of

small diameter (2ro), passing through holes in the sheet located in node of a

square grid with sides d. The grid contains 400 contact screws. When solving

a concrete problem the region occupied by the sot-ces is put on a circle with

contact screws and to those screws which fall the region a current is supplied.

The remaining screws are de-energized. The field in the model will obviously

be distorted as compared to the on soight first due to discrcte supply of

current, second due to nonuniformitles of the sheet by caused by the switching on

of contact screws whose conductivity may be taken infinitely large. Let us

estimate the magnitude of error caused by discrete feed of current to the model.

Distortion of the field in the model will have t:o causes: the discrete

structure of all the totality of sources filling the assigned region; distribution

of sources near point of measurement differing from that assigned.

Let us clarify the influence on magnitude of error of each of these causes.

We divide the entire region filled by sources into squares of side d and

replace each square with a circular source of radius rO. The complex potential

of the field of a source with magnitude T, distributed evenly in a square with

side a is expressed, outside the square, by the formula [24].

2a~z V -- 2an(2n + 1) (4n + 1) 211+' (Z

(origin of coordinates z = 0 at the center of the square). The complex potential

of a circular source r 0 of the same magnitude T equals

V_(Z) .i rt .. L (25 .2 )IP'•)• -- a¥1n
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The difference in potentials is written thus:

1:, 2n1(2n + 1)(4n + 1) e+- (53)

The component of the modulus of intensity brought about by t'tis difference has

the form
I gad AU -- I AW' (z) -=

N~~~ (d4l I~d (25.4)
(2 .+ 1) On + 1)2hz 22 6Ozz~k~zIJ

The modulus of field strength of the circular source is expressed by formula

Igradul = WV(z)I = "-1 (25.5)

and relation of the moduli of intensity

I grad UI< -I z( (25.6)

For fz•>d this quantity is less than 2% and drops rapidly with an increase

in !z!. Consequently beyond the limits of a circle of radius d distortion of

the field as a result of replacement of the source, continuously distrituted in

a square of side d, with a circ"lar source r 0 cannot be taken into account. All

the more so it is not possible to consider distortion of the field beyond the

borders of the region caused by the discrete structure of the entire set of

sources filling it. Distortion of the field inside the region will be caused

only by those circular sources which are located alongside the considered p:)int.

Let us estimate the error caused by this distortion when measuring potential and

intensity. We make the appraisal for the case when the entire circle r is filled

with sources uf constant density a. Potential outside circle r is equal

L-(Q) =- InQ +o. (25.7)

Let us take potential of contact bus on circumference R equal to zero, then

or'
2 y'

and

(e '-'. R (U-(o = •m •- (Q >r).
2y Q

Potential inside circle r equals
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U+ ( t) =- C,.

On circumference p - r the potential is cotitinuous, hence

and (25.9)
U+() ýF-+Ty(I + .

With a decrease in radius of the contact screw r 0 its potential will

increase and at the same time, dJtortion of the field near the screw will

increase. Let us find the magnitude of the ratio L, at which the error

caused by this distortion will be less than permissible. To simplify calculations

we wil,. consider that every circular source (screw) replaces a source continuously

2distributed in a circle R of area d . Besides, determination of the potential

of source r 0 we will consider chat all the remaining sources are continuously

and evenly distributed in circle r.

Let us assume that the center of the considered source r 0 Ls at a distance

m from the center of circle r. Since source r 0 replaces itself by sources

evenly distributed within limits of circle Ri, then its potential -.ay be presented

in the form of a sum of two components: the first, caused by all the remaining

sources continuously distributed outside circle R. and the second caused by

source r 0 . The first component of potential we calculate impressing on potential

U of the field of positive sources evenlyfilling circle r, a potential of a field

U. of negative sources of the same density evenly filling a small circle R1

displaced a distance m from the center of circle. Applying method of mirror

images we find that outside of circle R.

U., (Q) ;!- !!'.- ý+ o
2y Q*

Here p, and P2 - distance from point of determination of potential tc

point m and its mirror image R2 /m on circumference R respectively.

On the contact bus =hen R the potential equals zero.
Thus

"I= -- -n +m' (25.10)

Q 2 =(R+m)
U.-(Qj 2V 1 I Qel W
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On bovndary (Q R. Q2 - -R the potential is continuous

__ oR+ I- R,(R+m)
4y 2C, y R-•- m1-_Rm, (25.11)

4y R2(R4-m) 2r

Consequently the first component of potential at point m will be

determined thus:

U, (M) - U+ (M) + U. (0)=

amp ar(R I R 1 R'-m'-MR1  ' (25.12)=.--'•-"ar - (•"•in +- [F-• in .Ty- Y -r 2 2R, (R -- m)

The second component of potential at point m caused by circular source

r 0 equas

RIn -1 (R + ,Un2 (e)------ n @m (25.13)

Cn circumference p, = ro, and consequently, at point m

ry) del ro (R + mR) -m (25.14)

--T 2- -R' -- M2•= 2 -12 -m"

Resultant potential Uz - U- + U1 at point m is

Vi .rr.) + (i 4 . ,-)- . "(R*-nf-R1 ) 1T (25.15)

The absolute error at point m equals

dlI o+ )2y• ( R,

The relative error at point m (with respect to voltage between the center

of the model and a circumference of radius r) is

S2R2 In"+G+ -)
•-- (25.17)

U+ (0) -- U+ (r) r2 2-7

Hence one may see that under the condition InL -- or LO (.•-0 the
R, 2 R1 -



relative error 6 eauals zero. Howev.r duinginZ 8ar tiv.n we id d + co nsde

distortion of the field in the model due to nonuniformity of the sheet caused-

by attaching contact screws of radius r 0 . This distortion will be less smaller

the ritio tnerefore we are assigned a permissible magnitude 5m and from

this condition we determine the minLmum value of R

8.,r't 2R, In ý--,R2. (25.18)
2,2-- R,.

In circle r is placed N sources, consequently 7rr = a 2, whence rind
Considering what rR2 = d2 , we obtain r - R,|1N

Placing this value in expression (25.18) we have

S16• • a.v+ l(25-191)
2'0I

-whence- . ;for r = 150 mm, 6m = 0.01 and N = 400 we obtain ro> 0.615 mm.

Let us take r 0  1 I mm, d = 15 mm and contazt screws we select with dimension

M2.

Let us nc" turn to an appraisal of error for intensity. Measurement of

field strength on the model is made with a double probe with rigidly clamped

needleýs, the distance between whose centers equals d. Actually the potential

difference between two points at a distance d is measured, therefore the appraisal

of error will determine for this difference.

The potential difference between points ( =m± Mwith continuous

filling of circle r by sources of ccnstant density a should equal

-- t2 2 = - omd (25.20)__,AU (,M) 4y+ 4y = -•

Let us find the voltage between those points with a discrete distribution

of sources r 0 in circle r. All sources located beyond the limits of a circle3
of radius R 2 = 3 d with center at point m (Fig. 38), will be replaced by2
continuously distributed sources. The voltage between the probe needles can

now be calculated, determining the field in circle R2 from sources continuously

distributed outside the circle and from nine sources r 0 falling within the

circle R2.

If during measurements the center of the probe conincides with the center

of the contact screw, then due to symmetry of thp field of nine sour-ces r 0 both

needles fall on the same equipotential line of the field of these sources and

1 2;6
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Fig. 38. Fig. 39.

the voltage between the needles will be determined only by sources not falling

withir. circle R2. Potential of the field of sources distributed outside the

circle R2. equals

W+(M + U. (ei) j e- Ce + o
I d 4y 4y2

Voltage between points p=mj.±--, Q1=±=-4-

4V 4y (25.21)

i.e., equals the sought voltage

AU. (m) = AUIm). (25.22)

Displacement of the center of the probe frcm the z.nter of source r 0 has

little effect on the accuracy of measurement. Thus with displacement of the

ddcenters by -y the relative error will total 0.01 a• ~m
Thus during measurement of potential and average field strength in the

model, both in the region occupied by sources and also outside it the error from

their discrete distribution need not be considered in view of its smallness.

Inflvence of sheet nonuniformity. Let us estimate the error caused by

connecting contact screws in the upper circle of the model. The conductivity

of a unit surface of cross section of a contact screw is incommensurably larger

than the conductivity of a unit surface -y, therefore the cross section of the

12



screw will be considered as a superconducting circle of radius r 0 . Under the

influence of neighboring sources in every such circle charges will be displaced

and will create their own field distorting the field of sources in the entire

model. At separate points of every square with side d containing a contact
screw, due to distortion the fie"..d strength may differ considerably from the

intensity of the sought fieid of sources, however on an average its value

measured with a double probe, local oscillations have little influence. This

permits, during appraiaal of error, to replace the nonuniform section of the

sheet with screws by a uniform section of constant conductivity Yi equal to the

conductivity of a square with side d in the center of which is connected a

superconducting circle r0*

With our earlier selected magnitude of relation != 15 the influence of

displaced charges of one cylinder on the displacement of charges in the o~her is

insignificant and during calculation this influence it need not be considered.

Under this condition conductivity of a square d with a superconducting circle

r0 connected to it car. be approximately found.

Let us consider a conducting cylinder placed in a uniform field (Fig. 39).

The expression for complex potential of the resultant field in this case has the

form

W(z)=J(x.y) +IU(x.y)=Eo (z + •(5.23)

where E0 - intensity of a uniform fielO

Conductivity of square d we find taking the ratio of mean value of difference

of stream functions on the sides of the square AD and BC to the mean value of

potential difference in sides AD and CD

AJp5 = (-D-j) (25.25)

2

Alm=-I y=qdj+ý02, 2526
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AUcpm ff, U(x`'f)-U,(x,._ )]dx.m•,,(,_." . (25.27)

"T

hen c e+ (25.28)

For d = 15r 0 we obtain

Y ý 1.03y. (25.2S)

Let us now turn to an appraisal of the error. For this it is sufficient to

solve thb following problem: inside a circle of radius r and conductivity y.

is assigned the distribution of sources (giving rise to the biggest error).

Conductivity of the remaining plane is y. Find the field inside and outside

circle r and compare it with a field of the same distribution cf sources on a

uniform plane with conductivity y.

Let us find complex potential W,(z) of the field of source i located at

point z. of circle r (Fig. 40). Using the conclusions of Sirl [41] we will

consider that the field inside circle r coincides with a field created by

source t at point z, and sourc•T----t - at point z 1 =-j-- with the assumption-y, + Y z
that the entire plane has conductivity y,, the field outside circle r coincides

with a field ci,'ated by sourcer 2 =T 2y at point z and source T3 = 'T at point
Y 4- Y,

z = 0, with the assumption that the entire plane has a conductivity y.

In accordance with tnis the complex

B potential of the field inside circle r

has the form

ln~-z)+YI-YZ, 2 i [1 + Y jI-

(25.30)

complcx potential of the field outside the

circle

wt- M () ------ lnz+-!y In(z-z,)]-Fig. 40. inyy +V Y1+Y

k25.31)

complex potential of the field of the same source in uniform medium witn

conductivity -y
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S.(:) -- "2.y In(z-zO. (25.32)

The absolute error of potential inside the circle will be recorded thus:

AT+ (z) z= W* (z) - W (Z) --- i (Yj - Y) In +- -

"t) , zz (25.33)

absolute error outside the circle
" 'z--'In I .-•.

Ai•(Z) = W, (Z)-- W -- z, 1+ 1-- )2"•

error of intensity inside the circle

JAW~zj j (25.35)

a+ ZI V Y Y -- z t (25.36)

V1+ Y~+ I
z1 I

-g g_ T 1 -- , (25.37)

Considering that g differs little from unity we may write

O'<(- I (Z-•- i r'-2zl " (25.38)

Let us setzI, I=ar. Iz Cr,.where a< I and C< 1.since Iz, I <r and z<r, then,

considering that the least value of the denominator frs-zzzf will occur under the

condition argz = argz, we obtain

-1 - +a 1. (25.39)

The biggest value of the right side of this inequality, equal to two,

will occur under the condition a = c, i.e., when z = zI and the point of

measurement cc'ncides with the source. The relative error at this point is
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-- 2 =-o,o3-3%. (25.40)

Hence it also follows that with any other distribution of sources in the circle
+

r the relative error 5 will be less than 5WAXC.

The error of intensity outside the circle is written

I~ ~ ~ I Y1;" () = •,- Yt 2,
2-ny yi+y z(z-zO' (25.41)

W'(z)j y- 1 + g+ ' + Iz"l < Izl (25.42)

r<!zl.
The maximum error 6C will occur when Izl Iz1 l, i.e., when the source and

point of measurement are on the boundary of the circle,

+'= g- - - = o,o05 = i,5%. (25.43)

For any other distribution of sources the relative error 6- will be less

than 6.3Kc"

The analysis carried out leads to the conclusion that when solving concrete

problems the resultant error of modeling the deriv, ive of tne sought function

will not exceed 3% of the real magnitude at the measurement point. The error

simulation of the function will be even less.

An electrointegratorpermits determining not only the sought function but

also its conjugate in that region where it exists. For instance, during

calculation of the magnetic field in the air gap of an electrical machine it

is necessary to know the distribution of the scalar magnetic potential along

the contour of the steel parts for assigned distribution of current density

in the cross section of the wirAings. The electrical potential of the field of

current in the model can serve as an analog of only the vector magnetic potential

which outside the cross section of the windings is a harmonic function, the

conjugate of the scalar magnetic potential. Arranging the double probe in

such a manner so that on every secti n of the contour of length d the needles

of probe fall on the normal to the middle of the cross section on both sides

d
at a distance from the contour, we can measure the increase in scalar

magnetic potential on ever section and thereby find the distribution of potential
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along the contour.

§ 26. Electrointegrator for Solution of
the Dirichlet and Neumann Problems

Let us now pursue the question of the simulation of the third mathematical

operation of § 24, i.e., simulation of a solution to the Dirichlet problem

for the Laplace equation. -Immediately we note that the Neumann problem leads

directly to the Dirichlet problem for the conjugate harmonic function. The

usual method of 3imulation has essential deficiencies. Let us consider, for

instance, the possibility of a solution to the Neumann and Dirichlet problems

by meanr of simulation of the sought function by an electrical field of current

in a conducting sneet.

As was shown in Chapter I any simply connected or two-connected region

can be conformally mapped onto an infinite band. In Chapter III we considered

in detail simulation of conformal mapping onto a band of the complex potential

of a field of current in a conducting sheet. Modeling permits experimentally

determining the corresponding points of any simply connected or two-connected

region and an infinite band. Knowing the correspondence of points it is possible

to transfer a solution to the Dirichlet or Neumann problem on to an infinite

band where it is known in the form of a Poisson integral. However, even on a

band numerical reduction of a solution is connected with a great expenditure of

labor. In connection with this a modeling device was developed and prepared,

an elect -ointegratorwb'ch permits fast and sufficiently accurate solution of the

Dirichlet problem ri an infinite band [36].

The electrointegrator is intended mainly for finding, on the boundary of

the band the normal derivative of the harmonic function defined by its boundary

values. It is based on the scheme for simulation of the harmonic field of

the current function considered above (Fig. 12). The electrointegrator is

shown schematically in Fig. 41. The basic element of the electrointegrator is a

segment of band I in the form of a rectangle made from a sheet of 0.7 mm stainless

steel measuring 250 x 2000 mm.

One side of the rectangle is intended for assignment of boundary values of

the current function and is divided into 100 sections on each of which an

adjustment of current is made with the heli of rheostats 2. The current in

each rheostat is set equal to the product of the increase in current function

1law
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Fig. 41.

on the section of the boundary to which the rheostat is connected times the

conductivity of a unit surface of the band. The sections constitute teeth

whose form and dimensions are selected from conditions of uniform spreading of

current in them. To the ends of the rectangle current is brought in through

massive brass plates. Rheostats connected to teeth of the band permit setting

currents from 0.025 to 2.5 A, and the end rheostats 3 - from I to 25 A. It is

possible to change the direction of current in the rheostats with switches 4.

Control of the current adjustment is performed with a multirange magnetoelectric

ammeter 5 which with the help of special fork 6 is connected in turn in the

circuit of each rheostat. The electrointegrator is powered by a single-phase

220 V line. A type (SN-250] (CH-250) fo- voltage stabilizer is incorporated

a dc voltage is taken from the output of an [SV-i00] ( CB-100 ) selenium rectifier

(7). The transformer of rectifier 8 has three different coefficients of

transformation which permits obtaining 8, 10 and 12 V rectified voltage (unloaded).

The dc voltage is supplied through buses 9 to which are connected the adjusting

rheostats.

This simulation scheme ensures practically independent assigment of boundary

values of the sought current function in the teeth of the band and at the same

time permits obtaining values of potential gradient U sufficiently large for

measurement. Measurement of the normal derivative of the current function on

the contour of the region leads, as was shown above, to measurement of the

voltage drop along the boundary cver a section A-r, i.e., to a measurement of



mean value of electric current field strength over this section, Metsurement is

made with a probe with two contact needles 10 separated by a distance which equal

to the tooth width. As studies have indicated, when measuring the mean value of

intensity on a section of teeth division the magnitude of error appearing as

a result of noncoincidence of values of the function of current at the base

of the tooth with values of the sought function on the boundary is considerably

reduced. For measurements is used a snsitive magnetoelectric galvanometer ii.

Simu]ation on a band permits instead of simultaneous assignment of limiting

values of function on both boundaries of band to twice assign the function on

one boundary ensuring every time on the other boundary a zero value of

it. In the beginning, with the help of rheostats connected to the teeth values

of the current function are values given which are proportional to the sought

function on the upper boundary of the band and all necessary measurements are

made. Then, considering the boundary with teeth the lower boundary of the band,

values of the current function equal to values of the searched function on the

lower edge are assigned to it and all measurements are also made. Summing

values at points with coordinatea x, y and x, (h - y), the sought value is obtained.

It is obvious that the boundary without ceeth is everywhere a line of current,

therefore J along the boundary is constant and may be set J = 0.

.his permitted a twofold reduction in the number of adjusting rheostats

The superposltioning method makes it possible to increase the accuracy of

problem solution due to the singling out of the consta•,t component of threshold

distribution of the function. The normal derivative fcic a constant value

of T on the boundary can easily be calculated analytically. As investigation

has shown, the influence of boundary values of functions removed from the

considered point by a distance greatrr than double tne width of the band are

negligible. This permits on a rectangle, with a ratio of sides I:h = 10:1, to

model the problem just as on an infinite band, boundary values of function on the

entire length Z of the rectangle being measured and the derivative on the middle

part of it retreating from the edge 2h being measured. Thus on the rectangle

a solution to the problem can be obtained from any section of an infinite band

performirg simulation along its sections. The possibility of solution of the

problem by parts is the great advantage of simulation on the band since it permits

a snarp reduction in the number of adjusting rheostats without a decrease in accuracy.
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The normal derivative of hamonic function T on the boundary of region D

is expressed by formula

- i "dtl.(26.1)

09,
where w normal derivative of sought function on the boundary of the band:

dt modulus of derivative mapping the function;

dt - element of length of contour of region D corresponding to element
of length dT of the boundary of the band during conformal mapping.

During simulation of the conformally mapping function we obtain

_ A r(26.2)

where AT - width of band tooth;

A, - length of section of model of region D, corresponding to one tooth;

,m -- coefficient showing how many times the dimension of the region
model are greater than dimensions of the actual region.

During simulation of the sought function 9. onto a band with the current

function J we have

-kya = ky' O-ky' A(

Here AU -- voltage drop on the section of a tooth;S(I
y -conductivity surface of the band ' -8,04-10! 1

k = number of units of the sought function corresponding to a
unit of current in the model (coefficient of simulation).

Substituting (26.2) and (26.3) in equation (26.1) we obtain

AU (26.4+)

Expression (26.4) can serve for calculation of the normal derivative of

function q). In Appendix I is given an example of calculation of the magnetic

field of a dc machine.
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Example of calculation of radial components of magnetic induction of the field
of main poles of dc machine HN-300.

Statement of problem

The configuration of the region of the air interval of the machine and

of the windings of the main poles is given (Fig. 42). Determine the radial

component of magnetic induction on the armature of an unsaturated machine.

Magnetic induction in the machine can be represented in the ?orm of

two components

B - Fa6 + P,",

where R6 - component of induction of vortex field of currents flowing in windings;

- component of induction of field of magnetization of steel parts of
machine.

Component is easily found analytically, its magnitude on the circumference

of the armature in an unsaturated machine is many times less than 8,.

The radial component of vector BH is

B.

where 9 is the scalar magnetic potential.

In an unsaturated machine it is possible to take . = w and under this condition

to calculate the boundary values of the scalar magnetic potential on the contour

of the air interval. Thus the problem reduces to finding the normal derivative

of potential on the circumference of the armature from its values on the boundary

of the air interval.

Determination boundary values

Scalar magnetic potential was calculated at 19 points on the contour of the

air interval of the machine graphoanalytically by the formula

where IW - ampere-turns of one coil of the main pole;

n - number of the axes by which the cross seetiox, of the coil is replaced;

zk - complex coordinate of the axis with current;

z V - complex coordinate of the point in which is determined the scalar
magnetic potential;

s - number of axes with current;

1:•i;



-- ±• • ±1 depending upon direction of current
\~ <~in axis.

\•• 't\ •"The cross section of the coil of the main

pole is replaced by two axes with current

.• .!_ (possibility of such replacement is shown

5 F earlier in § 4). Quadripole machine; s - 16.

Fig. 42 Values of (Zh--Zv) were measured on the

drawing with an accuracy of 15 . Results of calculations are given in

Table 10.

Table 10.

NOO ~ I~I No.oot of ofoPo T, I /W point /IF polnt I F'-" piot 4

Armature circuit I Stator *ircuit

1 -0,191 6 -0.078 11 0,800 16 0,028
2 -0,185 7 -0.055 12 0,822 17 -0,024
3 -0.170 8 -0.034 13 0.878 18 --0,025
4 -0,145 9 -0.016 14 0,911 19 0.000
5 -0,113 10 0.000 15 0.869

Conformal mapping of region of air interval onto a band

The correspondence of points of the contour of region of air interval of

machine to points of boundary of band during conformal ,apping was found

experimentally. A model of the region of the air interval was prepared from

0.25 mm dynamo steel in scale m = 3:1. The investigated section of region

of air iýnterval between axes of the main and additional poles is depicted on

a rectangle with ratio of sides

I R,
- = 23,3,

where R. - ýc electrical resistance between contacts of mode-

r -- resistance of square prepared from material of model (r is
conveniently calculated by measuring the resistance of a long
rectangular striN).

During conformal mapping onto a band of width 250 mm the length of the band

is found equal to 5.830 m and with a tooth width of 20 mm contains 290 teeth.

Calculated values of magnetic potential on the contour of the E'ir inter,,al are

translated to the corresponding points of boundary of band. Distribution

curves for m along the lower and upper boundary of the band are shown in Fig. 43.

1 37T



! I'

Solution cf problem on electronitegrator

Assignment of threshold function. Since the investigated part of region

is mapped onto a rectangle with ratio of sides 23.3:1, while the analog device

permits assigning boundary values only on a section of a band, the problem

was solved by parts. Dimensions of section of the band were selected in such

a way as to ensure the largest possible accuracy of assignment of boundary

values and measurement of the normal

"derivative to the sought function. The

46!1- II [ I| constant component of boundary distribution

q_(t) was separated on each section.1 -Ii I Setting of currents in the rheostats

423 , 125 7,7 '0 M9 IoT was performed in turn it being assumed that

Fig. 45. the voltage on the rheostats under

operating conditions will equ'al half the source voltage (see diagram, Fig. 41).

Voltage drop in the band leads to a redistribution of voltages on the adjusting

rheostats which leads to a distortion of boundary values of the current function.

Howeve2 the analysis maat .howed that the distortion does not exceed 19.

Finding the radial component of magnetic induction. Calculation of induction

of the magnetization field was performed by the formula

B,. .= pnky' IAU

where 1±0 = 4-i.10- H/m;

kz - coefficient taking into account toothed nature of armature,

m = 3, k = 5,73;

4,U - voltage drop in section of band tooth

y' = 8,04. 102 I/ohm;

At -- length of section on boundary of air interval corresponding to one
tooth of the band.

Substituting numerical values we obtain

B, = 1,76. 10-' AU

kA1
Induction was calculated at twenty points evenly located on the circumference

of the armature between the axes of the main and additional poles.
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Pig. 44.

Values of AU were measured with a magnetoelectric galvanometer with a

sensitivity of SH = 1O-5 V/div.

Values of At. were determined by simulation of conformal mapping of

region of the air interval onto a band,

The vortex component of induction B6, under poles was calculated by the formula

Ba.

where a - magnitude of air gap, but in the interval between the main and additional
poles

where 9(M) - potential of point M taken at a sufficiently small distance o'
from the considered point on armature along the radial direction.

Magnitude of B4, nowhere on the armature exceeds 0.6• Bwn.amc.

In Table 11 are given computed values of BA = B., +-B6,, and experimental

data. Curves plotted from these data are shown in Fig. 44.

Table 11.

No. ofPoint Bý, estimAted f~~pit8
0 0.171 0,173 10 0.090 0.098
1 0,173 0, 173 11 0.072 0,079
2 0.173 0,173 12 0,050 0,056
3 0,173 0,173 13 0.028 0.037
4 0,173 0,173 14 0.016 0,025
5 0,169 0.170 15 0.009 0.015
6 0,159 0,162 16 0.006 0.007
7 0.141 0.149 17 0 0,004
8 0123 0.134 18 0 0.002
9 0,108 0i18 19 0 0.002

20 0 0,002
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The basic element of the electrointegrator is a segment of thin steel tape

in the form of a rectangle with ratio of sides 1:10. To the largc side of the

tape with the help of teeth of special form cut on it and regvulating rheostats

a direct -urient is applied to each tooth proportional to an assigned increase

in current function on a section of the boundary of the band equal to the width

of a tooth. To ends of the segment of tape are soldered massiie orass contacts

to which also is applied a current (Fig. 45).

The degree of homogeneity of stainless steel tape is very high. Measurements

of the magnitude of conductivity of a unit surface of tape y made by us showed

that tts deviation is lass than 0.5% y,.

Therefore the error due to nonuniformity of the tape will be disregarded.

1

X NX

Fig. 45.

Sources of error of simulacion of the sought function on the integrator are

obviously;

1) distinction of form of t.pe, on which is modelled the sought function,

from an infinite band;

2) deviaoron of fixed values of stream function at tne base of every tooth

from assigned values of the sought function;

5) redistribution of current applied to the teeth due to voltage drop in the

tape.

Let us estimate the er-ror of measurement of The normal derivative of the

sought searched function introduced by eacn source separately [31].

influence of late:al contactz. To ends of the tape along lines x = 0

and x = (Fig. 45) are soldered brass ,onzacts responsible for a constant valu-is
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of potential U =c and U - c2 on these lines. Consequently the conducting tape

wi:ll be a rectangle and not an infinite band. The boundary conditions on the

rectangle wil) be mixed since on individual sections of the contour of the

rectargle (y = 0 and y = h) values of stream function J(x) = 0 and J(x, h),

are assigned, on the other (x = O, x = 1) - values of potential U = c. and U = c 2 .

Let us 2onsider the line of contact x = 2, on which we take U c2 - 0.

Potential of field of current U and the derivative normal to it LU are

continuous as this line is approached and the values of potentia. on it are

equal to zero. Consequently, the complex potential - analytic function n = U + iJ -

is also continuous as the line x = I is approached and on it takes the pure

imaginary values 0 = iJ. As follows from the Riemann-Schwarz principle of

symmetry these conditions ensure symmetric continuation of function Q(z) through

the line of contact ? = I on the adjacent section of the band - a rectangle

with boundaries x = I and x = 21, and consequently, also ensure equal values of

current function J(x, h) at points on the boundary symmetric with respect to

the line of contact x = Z, i.e., J(x, h)-J(2i-x, h)[16). Applying similar reasoning to

the other line of contact x = 0 and to all lines x = k1 (k - integer) we conclude

that mixed boundary values U = c. on x = 0, U = c 2 on x = 2, J = J(x, h) on

y = h and J = 0 on y = 0 are equivalent (for section of band 0ix< I ) values

of J(x, h) periodically repeated on the boundary of the infinite band, even with

respect to lines x = ki and with value J = 0 on boundary y = 0 (Fig. 4;).

Let us estimate the error, introduced by the contacts, in the magnitude

of the normal derivative L at boundary point of band x, h. In Fig. 46 tne

solid line represents limiting values of functionsJ on the boundary of an infinite

band necessary according to conditions of the problem; the dotted line shows

values equivalent to constraint assigned constant potentials U = ci and U = c 2

on the lines of contact. Obviously, the error in magnitude of the r.crmal

derivative - will be determined by the difference of boundary values

J(x, h) - J(21 - x, h) beyond the lines of contacts x = Z and X = 0. For

simplicity we :onsider the influence of the difference of limiting values

J at distances greater than 2h from the considered point to be insignificant.

The magnitude of the normal derivative ý- at point (x, h), of the boundary

of an infinite band, with an assigned distribution J = J(x, h) on the upper

boundary and J = 0 on the lower boundary of the band, must equal
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11 J0'1-(x,h) .k J(T)- J(x,h)

+ ______ I (T I ()-,x, h
2h+ k - a& +--I dr (27.1)

In reality, due to the fact that the band is replaced by a rectangle

with contazts along lines x 0 and x = ,, we have

.m f (- J -- J(, hh) k __ __

"dy h 2h j chk('r-- x) d-r +
-- (27.2)

k .I(r)-- (x, h) dTk + Di
Schk(r-x)- -x)-

Absolute error, consequently, is written

0,, (27.3)
"k (r-)- l (--T I :J)--J(21--T) d

"f) -- chk(r-x) 1

Let us assume that point (x, h) is removed from the contact x = I by a

distance equal to double the width of the band, i.e., x = 8h(= lOh). We

obtain the maxir.um error possible if we take the differences J(-) J(-T) and

J(t) - J(2Z - "r) equal to their maximum value 14 in the interval -r < I +

or -h r r 0 (we assume that J(t) is limited on the entire upper boundary of

the infinite band and beyond the borders of the indicated interval J(T) < 26M).

The value J(-) = 26M for t > I + h affects the valve of A: at point x = c8n

less than the value of J(,T) = M within the limits of interval h

0

'6Y M fdr kM dr
dig-A h 2h ch k(r - 8h) - I 2 i chk (-8h)-- I

M da + _4."- lJ cha---I- cha- 1 l=•-(cth43+cthnz-2)- (2-)

2-
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Fig. 46.

Consequently, at distances from contacts greater than twice the width of the band

the error, introduced by contacts, in the magnitude of the normal derivative of

the modelling function may be disregarded. Analogously it may be demonstrated

that the error, introduced by contacts, in the magnitude of the modelling

function J (and its conjugate), at distances from the contacts greater than twice

the width of the band, is just as small.

Thus the middle part of a tape of length 10h - 4h = 6h will be the working

section. The modelling function J rn it (and also its conjugate U), if bDundary

values of J(x, h) are fixed on the entire upper boundary on the tape will be

very close to the sought functinn.

Influence of divergence of limiting values. Modelling current function J

is established on the boundary of the band with the help of a rheostat connected

to each tooth. To the tooth is applied a current proportional the increase of

the sought function on the section of the boundary equivalent to ti * tooth width.

The normal component of the vector of current density on the boundary of the

band y = h will be proportional to the tangent to the derivative of the current

function

R R- . (27.5)

The distribution of current density bn on the boundary within the limits of a

tooth width is determined by the form of tooth, the position of the contact on it,

the magnitudes of currents in the neighboring of the teeth and the magnitude

of current through the cross section of the tape, i.e., the magnitude of the current

function at the base of the tooth. In general the distribution of current

density does not coincide with the -sslgned distribution of tIe tangential to the

derivative of the sought function. Therefore the value of current function J

on the boundary y = h will coincide wifh assigned values only between teeth at

points of tangency of the line y = h with the contour of tne teeth. Even on
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those sections of the boundary where assigned values of current function are

constant, constant values of current function J cannot be assured due to

current flow from the band into the tooth.

Divergence of boundary values of the current function with those assigned

h
will be less the greater v- j; (h - width of band, T - width of tooth) and

the greater the smoothly assigned valueq of function J on the boundary change.

These factors determine the magnitude of error of the electrointegrator and its

resolving power.

In order to find the normal derivative of the searched function it is necessary

to measure the tangential component of in~ensity Ex on boundary y = 0 or y = h

of the band of the integrator. It is impossible to measure the value of intensity

in any point of the band. Therefore the mean value of intensity is measured

on a sufficiently small section of the boundary. Measurement is made a probe

having two contact needles the distance between which is rigidly fixed.

Let us find the magnitude of error of such measurement obtained as a result

cf divergence of boundary values of the current function with assigned values

of the sought function.

Let Ji(x) be given according to the conditions of the problem of distribution

of the current function on the boundary of the band, J(x) - distribution

fixed on the boundary of the conducting band of the electrointegrator by means

of applying a current to the teeth proportional to increases on corresponding

sections. The difference of these values AJ(x) ý J 1 (x) - J(x) on the boundary
ov

yields an error when measuring of mean value of the normal derivative

Let us take the distance between probe needles equal to m. Then

s-fm'd -Udx-- (27.6)

IP M dy J x
S z

where LU - corresponding potential difference between needles of probe caused

by divergence of boundary values of the current function with assigned values

of the sought function.

On the boundary of the band at point (x, h) the error has the form
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Fj chk(v-x) ( 27.7 )

+ l +a + ox-AJ(x-a)-2AJ(x) da
chka- I

The potential difference AU, caused by error -. , at point x and x + m on the

boundary of a conducting band between needles of the probe will be (Appendix I, § 27)

AU () • aAJdx AJ(x)_

a h

+ j dx A ( a)+AJ(x-a)-2AJ(x) d-- (27.8)2h chka-- I

&-.., - I 1, (X+a)-.4 Al (x -- a) -- 2AJ (x)! dx'S Al()is+ kf
h 2h i ch ka - I da.

From this expression one may see what if on the bouridazy of band 6J(x) there

is a periodic function with a period to equal to in, then LU takes a minimum

value

AU"A' X x (27.9)

Since on the boundary of the band values of J(x) coincide with values of J1 (x\

only at points between the teeth then the difference of these values LJ(x)

must be either a periodic function with period to equal to the tooth width T

(when values of function J,(x) on the considered section are constant) or,

as we will see later, can be represented in the form of a product of the

periodic function of the same period times another function dependent on Ji(x)

(when J 1 (x) is changed). Therefore for increase of accuracy of measurements

it is necessary that the distance m between needles of the probe be made equal

to the width of the tooth T. Here formula (27.8) takes the form

1 )k (27.10)

AU (x) f AJ (x) dx + F chka- I da.
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Let us apply formula (27.10) for appraisal of the error in measurement of

the mean value of the normal derivative of the sought function J,(x, y) on the

boundary of band y - h with different forms of behavior of the maximum values

J 1 (x, h) near the point of measurement (x, h).

1. Let us assume that on both sides of the measurement point x values

of the given function are constant: J 1 (x, h) = const = c. On the electrointegrator

this signifies that to teeth on the left and right of this point current is not

applied. Values of the current function J on the upper contour of the tape will

also equal c but on the line y = h due to flow of current in the teeth, values

of current function J(x, h) will differ from J = c.

; 7

4-

d

f-

Fig. 47.

In Fig. 47, a is given the distribution of current density A, 1(x)

in the base of a tooth obtained experimentally. At the point of contact of line

y = h with contour of the tape J = J = c, due to flow of current in the tooth

the magnitude of J(x, h) drops further attaining a minimum on the axis of the

tooth. Then as a result of the flow of current from the tooth the magnitude

j(x, h) again increases and attains a maximum J = J= c between teeth.

F.1



On the line y h the value of the current function will equal (Fig. 47b)

JI(zA)- -;--I'()dx. (.)

The difference of these values

)() dx (27.12)

will obviously be a periodic function with period T. The error in measurement of

average intensity AU is expressed thus:

X+r

AU u Al W(x dx. (27.13)

Let us demonstrate that this error can be predetermined and eliminated.

The mean value of J(x, h) equals

J,• - (X, h) 4IX -- "- ,- Al (x)] dx=J -

ajT (x) dx. (27.14)

From a comparison of formulas (27.13) and (27.14) we find

,+r
. l T(x)dx (27.15)

In order to clarify the meaning of expression (27.15) we show that conductivity

h7 v of a rectangle bounded by lines x = 0, y = 0, x = T and y = h, is equal

to the ratio of the difference in mean values of the current function AJ.,

on sides y - h arid y 0 0 to the difference of mean values of potentia2 6Up

on sides x T and x = 0. Indeed 'r
ACP _- (X. h) - P (x T 0 i I' (x. h) J(X. 0)I dx =

dx dy.(27.16)
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A U 0(T g) (7 UP (0. ) u CI(r, y) U(o, y)j dy

1• d (27.17)

dI dx.

Function J(x, y) is harmonic in the rectangle, including its contour, therefore

TA k

T T d T aLI

it (27.18)I h
= - j ! •- dx = AUc = gAff, ,,

whence

h A4 (27,19)

Let us consider a section of tape with a tooth between line x and x + T

(Fig. 48a). If the current function on the upper contour of the tape is constant,

then due to symmetry of the tooth lines x and x + T will coincide with lines

of equal potential U = UI and U = U2 . The conductivity of this section g1 will

consequently equal

1 1 h m

Here hm > h - height of rectangle on which the considered section of tape

with tooth can be depicted if the width of this rectangle is taken equal to T.

Conductivity of the rectangular part of the considered section of tape with

tooth, bounded from above by the line y = h, has the form

h .1 _ 1 •.o
~~~~Tu~u1  W u[z4Y~ dxj. (27. 20)T' us -r - U, V;U1- l - T

and difference in conductivities

=u -- Je (27.21)
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From formula (27.15) J1 - M= U, formula (27.19)
T

Placing these values in expression (27.21), we obtain

M- - 4 W - .- -"(27.22)

Hence we obtain a measurement error for the average voltage, using a double

probe with distance between needles equal to T, on the boundary of the band y = h

W. T I )-- it =all, (27.23)

where a h a) constant which can be determined experimentally, measuring

=its =(UIt4 (27.24)

on a model from conducting sheet with a conductivity of a unit surface Y in the

form of the considered section of the tape with a tooth. In formula (27.24)

I is the current through the model, U2 - U1 - the voltage between contacts

of the model along lines x and x + T. Potentials on contacts must be constants.

! S2•

b

Fig. 48.

Thus, on those sections of the band boundary where the given function takes

constant values the measureing error of mean value of the normal derivative of the

assigned function on a section boundary of width T can be calculated beforehand.
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The mean value of the normal derivative - on section (x, x + T) of the boundary

dg
y = h will be recorded

SLU(X+)-U(X) AU U(x+)-U(x) a
T- + = + T1T. (27.25)

Noticing that for J =J

U(x + 7) -U(x) . Ur -U, =-1  1 (27.26)
T ha2 6

and

a 1, (2-(.27)

we conclude that the influence of error AU on measurement of the normal derivative

of the sought function on the boundary of the band is equivalent to an increase

in width of the band from h to hm. Considering the width of the band onto

which the assigned region, equal to hm (and not h) is mapped, completely eliminates

the error AU.

2. Let us assume that both sides of the measurement x the assigned limiting

values of the sought function J,(x, h) change linearly. We take as the

origin for reading x the left edge of the tooth on which measuremEnts are taken.

Then the law of change of J,(x, h) will be:

I1(x. h)=px+c. (27.28)

On the electrointegrator this will signify that to teeth or. the left and right

of the point x an identical current is applied. The least divergence between

J 1 (x) and J(x), and consequently the least magnitude of error AU would occur,

obviously, when the density of applied current 6, at the base of the tooth

(y = h) is constant. The divergence would then be determined only by the

influx of current to the tooth from the band. Such a tooth form (Fig. 48a)

was found experimentally in the base of which the density of applied current

during free influx of current from the tooth differs little from its mean value

and has the form shown in Fig. 48a.

The increase of the current function with an increase in x leads to an

increase in current flowing into the teeth. Besides this, near the tooth is applied

a current which does not succeed in being evenly dis',-ibuted ovcr the entire

cross section of the tape and the influx of current in neighboring teeth increases
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values of density of current we write thus:

I
f(8,--)- pxf, (X) + Ch (X) +p If, (x) + f3 (x)J (27.29)

Here f 1 (x) = f. (x + kT) is a periodic function conditioned by the flow of current

into the teeth (Fig. 47a); f2 (x) = f 2 (x + kT) - a periodic function dependent

on the divergence of density of current applied to the tooth with an assigned

value of current denbity (Fig. 48a); f 3 (x) = f 3 (x+kT) - a periodic function

appearing due to an increase of influx into the tooth of current applied in

neighboring teeth (Fig. 49a).

Let us consider the influence of every member of expression (27.29) on the

magnitude of error AU(x).

As can be seen from the graphs (Fig. 48a and 49a) f 2 (x) and f 3 (x) - are

even function with respect to the axis of the tooth. Consequently their

antiderivatives

Al, (x) = Pi, (x)-- r P f (x) dx

and
Al, (x) = pq', (x) = p f, (x) dx

wi2! be odd periodic functions whose constant components equal zero. Therefore

AU,.+U,= [A62(x) +4 Al,(x)dx=O. (27.30)

Let us find the magnitude of error from pxf,(x). We designate

7

Sf l(x)dx -=---- (x) •- qPU(x: ,+- , (x)dr= op (x)+ q-c , (27.31)
0

u(X•--=F,(x)f (FuX) (+ x)x = Fl(X) + C. (27.32)

Here q 11 (x) and F1 1 (x) are periodic functions whose constant components equal

zero (Fig. 47b, c):

f"(X) = 0 FL(x)dx 0. (27.33)

We have
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= I -9(x)--Fn(x) + C,]. (27-34)

Placing the valu.• of &J,.(x) in 4'rmula (27.10) we obtain

A W = pTIf (x+a4F1 1 (x-a)--2F 1 (x)1

-- aj. (27.35)

As can be seer from the graphs (Fig. 47c) c,2 = 0, Fl(x) = F.1 (x) and in the
middle of tebases of the tooth Fn(• =O Fl - .11- (_T_- a(

1ence placing the needles of the probe during measurement at the middle
Qf the b)ases zf neighboring teeth x=-•,it is possible to eliminate error

UUl(Y.'(25

Thus in thl- case the error will be caused only by the component of currený density

proportional to cfB(x) But Ycf,(x) would be the currert density flowing

tnto the teeth if values of the current function on tne upper boundary of the

band were constants ard equal to its value at the

origin of the toot) (for x = 03 J,(O) = c). Consequently

ST 
~ tak,.ng the width of the band onto which is mapped the

asigined region equal to h., we can completely

eli'•inate the error in this case also.

3. Let us assume that on both sides the

measurement point Y the given limiting values of

the sought fThnction Ji(x, h) are measured along the

F,•o~r/•" •parabolar-X orab1i (x) =qX2+ px + c. (27.37)

4 /On the electroinýegrator this indicates that to

ig. 9. teeth on the left and right of x there is applied a

linearly increasing current. In this case an error will arise due to the

noncoincider.ce - density of the supplied current with the assigned values,
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the flow of passing currn*t in the tooth, and the nonuniform distribution of

current over the cross section of the tape and the associated increase of

influx to the neighboring teeth. With an increase in x the current function will

increase proportional to x2 , and the current supplied to the teeth proportional

to x. Therefore the error of assigrment of current density on boundary y = h

may be written:

S(6, --8) qx"f (x) + pxf (x) + cfi (x) +

+ 2qx f, (x) + f. (x)] + p [f (x) + fa (x)]. (27.38)

The error from components

pxf (1 X) + Ch (x) + p f, (x) + f (x)j

was determined in the preceding case.

Error caused by conponents of current density prcportional to

qzs'l (x) + 2qx [f2 (x) + f. (x)l,

can be estimated thus (Appendix 2, § 27):

2 (27.39,'

Let us clarify the meaning of the obtained expression. On both sides of point

of measurement x the assigned limiting values of the sought function J 1 (x,h)

vary along the parabola

It (x) = qx2 + px + c.

The dif. erence of currents supplied to two neighboring teeth is here expressed

by the formula

Y (qx + px) - Y (qx' + p-)J I= 2yT'q, (27.40)

whence

Ai t--t (297.41)

and consequently
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<,C I ;+C (27.42)

Thus in this case the measurement error of the normal derivativec" for'

an assigned ratio of band width h to width of tooth T is determined only by the

magnitude of the difference of currents supplied to the two neighboring teeth.

The relationship v =2 does not enter directly into the expression for error
T

of AU however the quantities c 3 , c 2 and c 2, determining error (27.42) depend

on v. Indeed, for a constant current density in the tooth, with a decrease

of width of tooth T the form of functions f,(x), f' 2 (x) and f3(x) will not change

however their integrals c(x). F(x) and P(x), and consequently constants c 3 , cI

3i

and c 2 will decrease inversely proportional to v in a degree equal to the

multiplicity of integration. Thus the decrease in c3 will be proportional to
SI!

1/v3, the decrease in c2 und c 2 -- proportional to 1/r. Considering that

jC2--jc~j>>3, we conclude that the measurement ecror of the normal derivative
of the sought function on the boundary of the band with a dec,'ease in width of

tooth (i.e., with an increase in v) will decrease somewhat faster than 1/12.

4. Let us assume that on both sides of the point of measurement x the assigned

limiting values o0" sought function J,(x, h) are vary according to cubic parabola

Ji(x)=sxs+qx +px+c. (2743)

On the electrointegrator this signifies what to the teeth on the left and right of

x a current is supplied which increases according to law quadratic parabola law.

With an increase in x the current function will increase proportional to x3 and

2the current supplied to the teeth is proportional to x . Therefore the error of

current density on boundary y = h may be written:

- 6.) sxf (x) + qx'f, (x) + pxf + ± k(x) +

"+3sx1 [f, (x)+f, (x)J + 2qx [f2 (x) +f- (x)J-+p (fl (x) -+f- (x)J. 4

Error from components

qxge (x) + px4 (X) + cf, (x) + 2qx [f2 (x) + h (x)) + p If[ (x) + f. (x)]

was determined in the preceding case. The error caused by components of current

density proportional to
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sxlf1 (x) + 3s* (V2(x + fs (x), (27.45)

can be estimated as in the preceding case

JnT(C,+cIiC;i + sK (27.46)

The total error in thie z&se will be determined chus:

AU )<2 4j%(q+-3T)(c-" +Icl- + Ic;!). (27.47)

Let us clarify meaning of the obtained expression. The difference of

currents supplied to the tooth with point measurement x and its neignbor

on the right equals

Ail = i2 ; 1; J(x) dx- J; (x) dr (27.48)

-- v(s + qx, + px) 12 - V (sx3  qx, + px) .I = (6sT' + 2q711 v

Difference of currents supplied to the tooth with point of measurement x and

its neighbor on the left has the form

4-,a= YJ(X) dx.y j:;(x) dx = 2qT~y. (27.49)

The change in difference of cur:-e,;ts supplied to the teeth is

hence

S = Ail - Aia 4 = 113 21-0
6WT- I 2T'y (2'5°)

Let us substitute into the expression for error (27.47) values q and s, expressed

in terms cf differences in currents supplied to the teeth

au1(z~) <y(c,+ Ic;! + (27.51)

or

U'tz < ý!(C-+ Ic~+cI C2•.•
T2+K (27.52)

Here 12 - current in tooth on which the point of measurement x, lies, i is the

current in the tootn to the right of point x. The expression for error (27.52)



in the same an in thp nrp(r-dina anpe whe! limi tina valueen of the ninetion

varied according to the quadratic parabola law (27.42). For i I = 2 and

iI = i = 0, when the limiting values vary according to a linear law or remain

constants, the error obviously will equal zero if the band width is taken

equal to hm.

From formulas (27.2) and (O7.52) one may see that the measurement error

for the mean value of the normal derivative of the sought function on width

of tooth T is proportional to the difference of the increments of the threshold

function J 1 (x) over the width of two teeth, i.e., is proportional to the mean

value of the second derivative to this function over section 2T.

Let us show that both for any other continuous law of change of limiting

values of sought function J,(x) and its derivative J,(x) the error must be

determined by the values of current in two neighboring teeth to which the needles

of the measuring probe are attached. From formula (27.39d) (see appendix) it is

clear that the magnitude of error AU is basically determined by the magnitude of

integral

k j 1 -- cos(oa da-. 2nv-- 1,
(27.53)

0

taking into account the influence of divergence of boundary values of the function

of the entire upper boundary of the band. The portion of error caused by

divergence of boundary values on the width of two teeth in the interval -

- T 4 a • T obviously will be proportional To

r
ha- - a (cosw -la ) cth CosoI 1 --

kjch n +c 20
- 2 fl0) ± )cos~a~- ~) 2c'(27.54)

+,_,) --)'
V 

e

-I 2;V x 2

Consequently the portion of error caused by divergence of boundary valuss

on the entire remaining boundary of the band for v - 10 will be less than

I1 -



2gv -- l- 2v A-

2xv - 1 100 8,8 l

of the total error arid hence the error AU will depend very little on the character

of change of the boundary values of the sought function beyond the limits of

the two teeth.

Let us estimate the magnitude of the AU error. From the curves in Figs.

47d, 48 c and 49c we find

Ca = 0,05. 10- 2, j1cj = 0.16. 10-2, Ic;I = 0,55.10-2. (27.55)

Thus

AU: (I-) < 2I (0,05 + 0.16 + 0,55). 10-2'1 -,=

, 1 (27.56)

The biggest value this quantity will be attained for i 2 = - UMi

Rheostats connected to the teeth of the band permit regulating the current in

them from 0.025 to 2.5 A, rheostats on the lateral contacts of the band - from

I to 25 A.

4.==2.5A, I. =25A, y=8.04-10--
ohn"

The maximum value of absolute error of change in mean value of the normal

derivative of the sought function equals

AU.,.. _2,13-10-2 5.10-2
T = 2 "8.0T = 6 .6 2 . lO--sv (27.57)

With a constant value of threshold function Jl(x) = Jc = const it is easily

possible to calculate the normal derivative

49 = . _ = - (27.58)

WyW yh'

Therefore for an increase in accuracy of problem solution on the integrator it

is advisable to subtract from the ordinates of the curve of the boundary function

constant equal to the initial ordinate J, (Fig. 50) of curve Jl(x) at the

origin of the considered section of the boundary of the band I = 1Ohm, and

to alter the scale of the remaining ordinates of the curve in such a manner

15-



so as to satisfy the relationship

•Jun* -- juu + (J- -- J

(27.59)

X : Here J..c, and Juia - are extreme

Fig. 50. ordinates of the curve Ji(x),

i and J- values of ordinates at the origin and end of the interval 1 = iOhm,

n and m the sirýher of maxima and minima of curve J,(x) respectively. The

greatest relative error of the integrator (with respect to is expressed by

the formula

= AU.. Yh 2,13"2.2I10-i", yvT
T 1. YTI. (27.60)

= 4.26. 10-2 = 4.26%.

This value will correct only when the threshold function satisfies definite

conditions for which its assigment on the integrator is possible namely:

1) after fulfillment of relationship (27.59) the increase of the boundary

function on a section of the boundary of the band equal to the tooth width T,

should nowhere in the interval 0 x Iexceed 1_-;_ 1.
v OV

X = x+ 7) -- J,(x) •(27.61)

2) the distance between any immediate extremal points of the function

should be not less than 2T.

From formula (27.60) it is easy to determine the additional conditions which

must be satisfied by boundary function J 1 (x), so that the relative error does

not exceed a given value, for instance one percent,

SaUzyk/ 2,i3- 10-2v(1-i 2 ) 0.01. (27.62)
TI,. -01,,1.

whence

(27.63)
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i.e., the difference in current supplied to any two neighboring teeth need not

exceed Im/2.13v.

Error of problem solution on the integrator was determined under the

condition that the threshold function and its derivative are continuous. We

shall now demonstrate using the superposition p.-inciple with the integrator it

is possible to solve the problem with the same accuracy as when threshold

function and its derivative have discontinuity of the first kind.

Let us consider this with an example (Fig. 51). Assume that

I (X)= 1W.(x) -- •< x< X1.

I.(X), X,<X < COC,

where

J,, (x1 + 0)--J, (x -O) = c # 0. 1' (xI - 0) = q, fJ1;,(x,1 0O1= q+ .

We draw tangents to J(x) to 4 be left and right at point x,. Equations of the

tangents are written:

J, (x) = q, (x-x +, (x), (27.64)

, (:)= q, (x - xL) + J, (x) + 0.
We designate

,(x)- J (x) E, C.
, (x)- Ji (x) = W.

Now the assigned boundary function may be written: for - oo <X<X,

J (X) =, (x) =(x) + q, (x - x,) + 1 (x. (27.65)

for x,<X<Kz

I' (X) = .(x) = fa(x) + q2 (x -- x) + 11 (xd) + C.

Boundary function ý(x) is continuous together with own derivative and the

component of the normal derivative conditioned by E(x), can be found with ýhe

integrator. The component of the normal

derivative conditioned by threshold function

J(x) = J (x) for x < x1 and J(x) = J 2 (x) when

x- - x > x it can be exactly calculated. Using

\ - ~formula (27.7) and substituting into it AJ(x)

on J(x), after simple transformations we Dbtain:
Fig. 51.

V'



on the upper boundary of the band (y h)

a/L= J(x) + 9'--1 In (I--l- ,) (27.66)
ST --h-- Ih(I- ,,! •em76•

on the lower boundary of the band (y = 0)

i (x) 0 (27.67)
OY, h ith(

In formulas (27.66) and (27.67) J(x) - J 1 (x) for x < x, and J(x) = J2 (x) - c - for

x > x . Summing values of normal derivative calculated from formulas (27.66) and

(27.67) with those measured on the integrator and stipulated by boundary function

e(x), we obtain a solution to the problem in this case also.

Influence of voltage drop in the tape. The voltage between buses fed from

the rectifier .-nd tape equals ±5 V. If a current flows through the tape due

to the voltage drop in it the potential difference U between the bus and different

points on the tape will change and will differ from 5 V. This leads to a change

of currents supplied to teeth of the tape and consequently to an error of assignment

of boundary values of the searched function. Let us calculate the possible

magnitude of this error.

The biggest voltage drop in the tape will be, if along the entire tape is

passed a maximum current I, = 25 A, is:

UM= I= l 25-10
yh 8,04- 102 0,311v. (27.68)

Hence the possible distortion of potential difference between the bus and

different teeth of the tape, and means the possible relative error of assignment

of boundary values of J,(x), will be

U .. 0.311
Oux -5 = 6,22.10-2 = 6.22% (27.69)

This error is easily eliminated if, without disconnecting currents, we measure

the current in every tooth and reduce it to the required magnitude. After

the first such correction the error obviously will be less than

82mme < low = 6.222- 10-4 < 0.40. (27.70)

and may be neglected.
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The cornnection between normal derivatives of the harmonic function on the

boundary of the band and on the contour of the region in which the problem is

solved, is known, is expressed in terms of the contour value of the derivative

of the conformal mapping function

Oa, ]dT Oja A• O

d 1 (27.71)

Here At - element of length of contour of the considered region; LT - its

corresponding (during conformal mapping) element of length of the boundary of

band or magnitude, proportional to the voltage drop on section Lt of the model

contour during electrosimulation of conformal mapping.

If simulation of conformal mapping is performed on a model of thin matel

sheet (electrical steel) the error of measurement of •-T with a double probe with

fixed distance At tatweer, needles connected to a galvanometer will differ little

from the galvanometer error. This permits affirming that the electrointegrator in

totality with simulation of conformal mapping make possible sufficiently accurate

solution to the problem of determination of the normal derivative of the boundary

function according to its limiting values on the contour of the considered region.

Appendix I

Derivation of formula (27.8) for error AU(x)

It is possible to alter the order integration in formula (27.8) by proving

that the improper integral

l((x + a) + Al (x -- a) - 2AJ(x) d
ifchka-- I d

converges uniformly.

This integral has singular points a = 0 and a = (L. At point a = • uniform

convergence is evidently due to a fast increase in the denominator. For uniform

convergence when a = 0 it is necessary to introduce the following limitation:

function AJ(x) must be discontinuous and have a continuous first derivative.

For AJ(x) this is satisfied if we consider only continuously differentiable

boundary conditions. The derivative here is limited:

AXP(x) = Jim A(X + a) + A (x - a) -- 2AJ (x)
8-" U2 <C,

where c - some constant suitable for all x. Therefore for sufficiently small a

J(x + Q) + AJ(x a) - 2Af(x) < ca'.

I1•;I



Considering that

decreases as a - 0 no faster than a2, we conclude that the integrand in the

environment of zero and at zero is limited and, consequently integral (27.7)

for all values x is finite. This permits integrating integral (27.7) according

to parameter x within finite limits and to change the order of integration when

deriving formula (27.8).

Appendix 2

Determination of the error caused by the component of current density,
is proportional to qx 2 f,(x) + 2 qx[f,(x) + f 3 (x)]

Let us designat e, as before (expressions (27.31) and (27.32))

"(x) dx = ip,(x) = pu (x) +- c,, iT, (x) dx F,(x) -= F11,,) + c

atl(x) dx I,(x)().= l (x) + = S' 1 (x) dx,

(xlx q,(x) --~ •.(x) + c1. j,(x)dx F2 (x) F21 (x) + c;.

,f(x)dx V. (x) dx=F8(x)-F,1(x)+c;,

0" T

r
c;= 'w (x)dr, e --- F,(x)dx, 4% (x) dx 0,

g+?

=F3 (x x 0, 0, 1 x~x0
•~ ~ ~~i ,(x =O x(x) dx --O, l,(x)dx=O, &+ ,,j(x)dx=O.

Graphs of functions f(x), q(x), F(x), 'Y(x) are shown in Figs. 47, 48 and 49.

Divergence AJ 1 (x) from term qx 2 f,(x) will equal



AI, (x)= q~f ~z(x) dx =~qx'Tp11(x) - 2q ~xy j(x) dx

-" JX'u (x) - 2xFu (x) +- 2'F1, (x) + 2c, 1.

Error AU(x), caused by divergence 6J,(x), has the form.

x+r

AU(x) - AJi (x) dx +

'T[L (i + Oa + AJ, (x- a) - 2AJ, (x)ldx

2hch -- I da.

I

We find each term separately
V+T £+? X+T

f Ix) {f:,,(x)dx -- 2x $ = I d+h-t h f xr, (x) dx +

+ Ti (x) ±( + )2 1 x- ) a - - XF1 (x) )x +

+ R7[ (z -T) 4F iifx)J.,,(X

[Al [•'(x + C)+ Ali' (x -- a) -- 2AJ', (.i)] dx=

= %+ 11+ Fu(x +a)_-271,(x +a)+

+ (-a+L TFi(x--a)--2,,(x--a)_

-- 2 + T F-.)(X) + 471,* (x) 1

If the needles of the :obe are connected to the middles of the teeth bases,

i.e., for x = T
2

Consequently



2L
()7.39a)

(-T) - (Yl + .) +a ++ kja

ch ku- - d I-

The error caused by components of current density proportional to 2qxf2(x) and

2qxf 3 (x), we find from formula (27.35) replazing in it p for 2q. and F,1 (x) for
F2 1 (x) and F respectively. For x = T

21F31(x) e2 we have

2\2 j )

and consequently,

'&U2(T it Pit1, 21C+ a) (21T
AU (-) 2q [ (~)-C, kha1F 1  dj (27.39b)

/7) Fs ) -cchk ( -I a -F 1 (2 ()

0kdc (79

In order to estimate tne error we replace periodic curves I, +a)

Fpit~ a and F,(..+) amolitude of large witn cosine curves with. Deriodt

and angular w = 2, We take
T

1711 + a) -S Cos wa, F21 (T + a) c2 cos oxz.F1 ,r ( J Co)s (a ,-T° . Fit,( T c2 ): ,(-°o .
F,,( Fu+ +) c~ca, k1 +j = c, , F in c.=c.F3 () ;

(2



Here we obtain a resultant error

AU(T-) -- AU,-+ AU, +A,&,U (27.39d)

Ca~~~~ + (c. -cC- akkdaS ld

Taking into account that

d = ±Ls. + = 2v,
a-I!

we calculate the integrals entering into formula (27.39d)

k I I kak1b 5 da = [(cos cza 1)cth- -coswa 1

da = -2o V nk sinoz•c- + wcos •o( (27.39e)
el*Q L-e,,- (n~k + W2)

___0'- 1+• 4
I -y 4v"

n, a-I0

ko (i I c a=w if th ka ) sin' cza 2J e~ oe(~ + jo.

+2-. (- n'k') sin wa --_ 2w'k' cos wa da

.+)4 = 16+' (02) ,+21k (0 - -'

,7 -- lF;5,



The magnitude of each sum we estimate by the integral

> 8>' dZiF + T+-va > z + I)x + 4P"

or

2nv > k do, d> 2v--4varctg ,.

16 v' r > 16 vs o 160 (z + O)dz
1 ( '+4v)'P _(nS+4v%2> I(z+ I)'+ 4v1I

or

_n >I . --16v 2  (27.39h)
2xv •..• h •' -- da > 2,xv -- 4v arctg + "

2vv 2 + 80

Taking large values of integrals and substituting in the expression for

error AD, we .•1-tain

2j~J h4 Ic+2zcc)~~a~I (27.39)

< 4iq(c8 + Ic;{ + Iel).
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§ 28. Calculation of the Magietic Field in the Gap

of a Saturated Magnetic System

Different electrical devices contain, as one of the main sections, a magnetic

system intended for producing a magnetic field of defined form and intensity in

given volume. Below are considered dc magnetic syste.ms for which a magnetic

circuit of ferromagnetic material has the form

shown in Fig. 52. Interest in such magnetic systems

arises in connectinn -Ith the development of new

types of ener co r s h it ra types of energy converters. Characteristic for such

arrangements are high values of induction (higher

than 2 Wb/m5 in large air gaps between poles and,

as a result, deep saturation of the magnetic circuit.

Fig. 52. In § 21 and 22 was considered calculaticn of magnetic

systems of electrical machines without taking into account the saturation of

steel. If one were to set the permeability of steel equal to infinity than the

boundary values of magnetization field potential on the surface of the steel can

easily be determined and the problem of calculation of the field in air wilr

reduce to solution of the Dirichiet problem for the Laplace equation. At

saturation the permeability drops sharply and there appears a drop in magnetic

potential A~pr in the steel parts of the magnetic circuit. In principle calculation

of saturation might be made if there were some method to determine the tangential

component of inten:=ity of the resultant field on the surface of steel Darts o•-

the magnetic circuit for actual values of permeability steel p-p(B).

Then, integrating equality

IHf = H,--H& (2.-')

over the contour of the core of the magnetic circuit, we obtain

• 4P.(t M---- M- • ( -U.nt V)+ -¢ (2;-.2)

However, in order to find tangential cc.mponent of intensity H on the 2'ntcur and,

t

consequently, the distribution of potential Al,. it is necessary, as will be shown

below, to have values of the normal component of resultant induction B, on the

contour, in other words, to know in advance what it is necessary to determine.



Therefore calculation of the field of magnetization of a magnetic system with deep

saturation is possible only by the method of successive approximations where as

the initial approximation it is advantageous to take with the appropriate form

the corrected results of calculation of the field for the condition pM , i.e.,

with the assumption that the magnetic system is unsaturated.

Calculation of the field may be made according to the following scheme.

i. Determine the potential of the vortex field of currents flowing in the

windings.

2. For the condition P=00 to find the distribution over the contour of

the steel core of the potential of the field of magnetization •z(t).

3. Solve the Dirichlet problem for region of air interval and find the normal

component of induction of magnetization field B,, on the contour.

4. Integrating values of induction B,,, over the contour of the iagnetic

circuit, find the distribution of the function of flux along the contour. If

the differential equation which satisfies the function of flux in steel is known

then solving the Dirichlet problem for this equation, we find the distribution of

the function of flux in the magnetic circuit. Differentiating it with respect to

the normal to the contour and dividing by the magnitude of permeability we find

Ht on the contour of the magnetic circuit and consequently new, more precise

values of distribution of potential of field of magnetization on the contour

5. From values of p(t) solve the new Dirichlet problem for the air interval

and so forth as until •A is equal with a given degree of accuracy, to _

How was demonstrated by Ye. M. Sinel'nikov, if we approximate the permeability

of steel with the formula

a
"b b+ H'u (28.3)

where a a-ýnd b are constants selected for the type of steel then the field in

the steel can be described by a scalar potential satisfying the equation of minimum

surface

I 1I. (28.4)
a9 am 411OX
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whereq

Function T, to the orthogonal potential, (function of flux) satisfies such

an equation:

I- 3tx 1 a r If"a

Ox' [ /'iou)' -J W c ax'" OxOy

+ 'I. x j (28.5)

The Dirichlet problem for equation (28.5) can be solved, for instance, by the

method of grids on a computer. In order for the process of successive approximations

to lead to a solution it is necessary, after determination of Htk, to check

whether the law of total current is satisfied

1W =Htldt. (28.6)

If equation (2P,.6- is not satisfied it is necessary to proportionally alter the

distribution of B= on the contour -f the air interval and to repeat everytt-ing

in Paragraph '4.

To facilitate calculation ic is expedient in first L,>?roximaticns to

calculate the field in steel by the usual methods of calculation taking into

account scattering of magnetic fl"x in the air interval of the magnetic circults.

Here the magnetic circuit is divided into a series of sections ", 2, 9, et,-.

(Fig. 513). From a solution of the problem in Paragraph 7 we find tr.e magnitude

of magnetic flux of the field of magnetizaticn,4%, pa-sing through se2:i.-ns -.f :he

magnetic circuit limiting the selected sections. Fluxes (D,, in sections o:' the

fu'r,:'%agnetic, part -of the magnetic circuit are equal to fluxes (D,,,, passinF

through sections of the internal contour of the air interval limited 2n the one

side by the point located on the axis of she pole and on the other by a point

belonging to the given section. When solving the problem on an integratc,', for

solution of the Dirichlet and Neumann problems fluxes q),, are founc: b.: -impie

measurenent with a voltmeter.

Tt is convenient co take the flux in one ol' the crc'ss sections as basic.

fcr instance in the cross section of a -.- gnetic circuit coinciding wit.n the workin-

1f::



surface of pole (0,,), and all remaining fluxes (D,. refer to the basic value, i.e.,

K =.. (28.7)

Coefficient K. takes into account scattering of flux Ly lateral surfaces of the

msgnetic circuit and bulging of the flux from the air gap between the poles.

In selected cross sections of the magnetic circuit fluxes of the vortex

field 0 are determined. For a given current of excitation fluxes . are

determined by the formula

+ n ZIl P - ,P1" (28.8)

where Ik - current in cross section of winding by replacement by the axis;

Zq and zP - complex coordinates of points limiting the cross section on
the internal and, correspondingly, external circuit of the
magnetic circuit;

zk -- complex coordinate of the axis with current.

For a rectangular form of the cross section of the windings of excitation

it is possible to use more exact formula for •P.c° which is obtained by integration

of expression (28.8) over the area of the cross section of the excitation winding.

For determination of AT(t) calculation is made of the magnetic circult.

For this, setting the ratio of flux of the magnetization field to flux of the

vortex field passing through working surface of pole,

(28.9)

find resultant flux in sections <D by the formula

Os= ,.c + Ko.XD 3. (28. 1o)

Assuming in cross sections of the magnetic circuit the induction to be

evenly distributed, find the mean value of induction

B - (28.~' i

B,=.

1T(



Further on the magnetization curve for a given sort of steel find the average

intensity in the selected cross sections H and then the average field strength

on the cross section of the magnetic circuit

if _,+ 
1 Sh (h+h) (28.12)

2

The magnetic intensity on the k-th section is found thus

wihere A/. - average length of section of magnetic circuit. After determining

all it is necessary to varify fulfillment of the law of total current

a

1W I

If equality (28.13) is not satisfied one should assign a new value for X and

repeat the calculation.

Appendix 1

Example of calculation of magnetic induction
of air gap between poles'

Given: form and dimensions of magnetic circuit and windings of excitation

(Fig. 53) ampere-turns of' the excitation winding comprise IW=500 000 A the

material of the magnetic circuit is grade

,[E2A] (32A) steel. Cur, nt density in

the cross section of excitation windings

+ is taken uniformally distributed and

2equal to 6 = 1.4 A/m2.

404 .Determine the magnetic induction

B on the neutral of the air gap between
y

poles, taking the field to be plane-
Fig. 53.

parallel.

'Engineer V. F. Kuzovkov developed the method, derived the formulas and
carried out the calculation.
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The magnetic system has two axes of symmetry x and y therefore we will

perform calculation for the region located in the second quadrant of the coordinate

plane.

Magnetic induction By is in the form of the sum of components of tne vortex

field B., and magnetigation field B,,. B, i'as calculated for ten points located

on the neutral (ox).

Results of calculation are given in Table i2.

Table i2

Apoin, B. I B . B M B. B

i~ I
O 0.328 2,820 3,148 4 0.1-38 0.658 0,796O 0.335 2.820 3,155 0.083 0,470 0.553
4 0,356 2,820 3,176 07 0.030 0.344 0.374
0 0.377 2.350 2.727 0, -0.149 0.282 0.133

0.320 1.160 1.480 -0, -0.220 0,220 0

Calculation of B., was accomplish with the nelp of simul.ation of the

magnetization field by a dc field in a conducting sheet on an electrointegrator

_+-_- for solution of the Dirichlet and

6 C Neumann problems by the method

presented in § 26 and 27.

Conformity of points of the

internal contour of the region of

r• Vn the air interval to points on the

boundary of the integrator band

V'14 during conformal mapping took

Fig. 54. place on a model cut from 0.35 mm

dynamo steels in a i:3.33 scale.

The investigated section of the air interval region (region included in the

second quadrant of the coordinate plane) is depicted on a rectangle with a ratic

of sides 6.8 (Fig. 54).

In first iteration the system is sumed unsaturated, i.e., Aq(T)=0, and

values of q() were taken equal to
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The potential of' the vortex field %.(r) was calculated at 15 points on the

internal contour (Fig. 53) with an interval between pointz of iO cm, by the

formula for two conductors of rectangular cross section:

+ +b).1(T) -- ( + b) (x + a) arctg - + (x--a) arctg Y + bx+a X-a

-(x+c)arctg y (x-c) arctg y + bx - ( - )art x----cJX +----- C

Sy--b Y--b
-(y -- b) (x + a) arctg -+ (x -- a) arctg x-at •x4-a

V-(+c) arctg y--b -(x -c) a-ctg ýK-b +x+C •-

+ r(x+a)21n x+a)±+(y-b)' +
4 L (-X+a?2 +(y +b)2

"_'(X -- 02s + (--+(x+c)lIn (x +c) 0 (2+ + W+ (x-aml (x -- a)-" + (j + b)2 +( ()2I + 02= + 02--b) +

+(xcr~~x-~f(x-f-c)2 +(y-b
. .+(x c) -- c) + (uY+ b)2 1(x-c)2 + (.y-- b)2 J+ (2a.14)

4 [ (X + a)Y+y-b2 (X _ C)2 + (y + 0)2n ,n
-IX +42+(-~t ( ) +(

+ 1 (x--a)2 +(y + b)"

+ • tV-I •'[In( .c)+( +-b 'I (x--c)2+(y-b)']}

Results of calculations of cps(r) are given in Table 13.

Table 13

__________ /W 1I I)*PWrl Ig %I-T

1 0 6 0,1766 11 0.3750
2 0,0337 7 0,2115 12 0,4400
3 0,0687 8 0.2500 13 0.4310
4 0.0937 9 0,2800 14 0.4300
5 0.1262 10 0.3250 15 0.4275

Boundary values of lps(T) were transfered to corresponding point:z jf 'he

upper boundary of the integrator band and were modelled with a current rr••crti.nai

to the increment Aqp.(T) on 86 sections of the upper boundary -f the band.

1I



Values of B. and B calculated in the first approximation of the solution

to the problem are given in Table 12.

For calculation of &p(r) the magnetic circuit was divided into 12 sections

(Fig. 53) from which eleven fell on the ferromagnetic part of the magnetic

circuit.

The component of magnetic flux from the vortex field in cross sections

bounding secticns of the magnetic circuit was calculated by an exact formula in

terms of the functions of flux

0 , i0 (= P').

where W. and tV are functions of flux at points with coordinates (Xq, yq) and

(Xp, yp) limiting the cross section on the internal and external contours of

the magnetic circuit respectively. The formula for qrcan be obtained by

integration of the expression for the function of flux of complex potential

created by the axis with current over the area of the cross section of thp

excitation winding. For the considered case when the cross section of the

excitation winding comprises two rectangles the formula has the form:

(X. y) = •- +b) (x +c) n(x +c'+(y+b)2)+(x -c)x

xlrn((x- c)' + (y + 9)2)-(x + a) In((x + a)' + (y+ b)+ -

- (x - a)In ((x-a)'+(9+b)2)1 - (y-b) [(x+c) In((x+c)'+(y - b)+

+ (x - c) In((x- c)' + (y - b) -- (x + a) In ((x + a)' + (9 - b)2 ) -

- (x - a) In ((x - a)2 + (y - b)) (28.15)

+(y + b)' arctg ++arct c arctg +( -- arctg

--(. -- b)z arctg x + arctC x _ cb arctgY _ -+ arctg x,--a+
Y -b y -- a bg -

+(X+-02 arctg -- arctg . +-- -barctg -+ -- C - n-C L X -- C

-& rctg ! - b ]--(x +a)2- arctg y + b _arctg y-bl_

-- x--a). arctgy+b- arctg----b +C.
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Computed data using formula (28.15), are given in Table 14.

Table 14

S~ctiin "U , JK,. as K.,. Kv, I Ka,

1 0,0615 1,380 1,430 1.432 8 0.067 1.290 1.287 1.290
2 0.069 1,385 1.437 1,435 9 0,0546 1,260 1,245 1.241
3 0.047 1,390 1.437 1.436 10 0.07 1.255 1.223 .,220
4 0,045 1.400 1,435 1,4371 II 0,0975 1.219 1.200 1,1955
5 0.0615 1.390 1,425 1.4351 12 0.103 1 1
6 0.07 1,360 1,405 1.403 13 0:116 o55 0.920 0.•
7 0.073 1,343 1.3 150

The component of flux of the magnetization field in the same sections was

measured on the integrator and its values in relative units (in the fcrm of

coefficient Ko) are given in Table 14. According to data from this table the

magnetic circuit calculated in accordance with the method presented in the abcve

mentioned calculation scheme for X = 5.125, determined values of A@(T)and

found boundary values of potential of magnetization field T, necessary for

solution of the Dirichlet problem in second approximation.

Boundary conditions and solution of the Dirichlet problem in the f:rm of

coefficients K,. in second duration are gr ian in Tables 14 and 15.

Table 15

1 0 0 9 114063 111700

2 15150 13300 10 1356!3 133220
3 29085 25450 11 122713 121750
4 40770 36050 12 131342 129075
5 45780 46585 13 128338 126075
6 63338 62460 14 126338 124075
7 82248 80305 15 125088 122825
8 100338 98155

Then, analogously, according to the given /(,, were cal2ulated p-tentia1 o

W,,(r)a for the third interation with X = 5.225 and the problem of ceterming

the magnetization field was sclved. Values of Ta(T)3 and Ka. are also giver

in Tables 14 and 15. Comparing coefficients K,. dnd K/,, we notice *hat the

maximum divergence between them in the same cross sections amounts to less than

0.15%. Being limited by an such accuracy we at this point terminate s-iutlon



Table 16 cf the problem at hand.

I~ I Tabie lo are giver' values of induction of magnetization
field and the resultant inditction on the neutral between

S11.69 P0Il poles obtained after three iterations
01 1.,69 2 02E
0 .1.74 2,096
08 I15 1,8 Comparing data in Table 12 and 16 it is easy to see

Q4- 0O.78 I1,1
o 0.51 .0,6 that determination of magnetic ,iauction in the air interval
0 0.396 O.-,479
0- 0,281 1C.311 of the considered system without taking . acco-ont saturation
'a 0.209 0.06
0 0.*22 '0 of the magnetic circait leads to very overstated results

exceeding true values for B by more than 30% (Fig. 55).
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§ 29. On Epectromodilina of ac ao netof Field
and on the Possibility of' Comouter

Calculation of Static Fields
ir. Non~linear :.edia

The dsgn~ng ofconte.•moxary electrical machines, especiafly machines of

I ~ nigh power, Is based on preliminary zalcu~a.!on~ of dfr• -ibuti'n cf ",.h• magnetic.

"1 ~7f;



field in the machine. Existing methods of calculation of this field in machine

are based on the use of the circuit concept and theref-re can give only approximate

results the accuracy of which often does not satisfy technical requirements.

This circumstance calls for a more strict approach to the problem of calculation

of the magnetic field in machines. The complexity of solution of this problem

is determined not only by the complexity of the configuration of the contour

of the machine components but also by the fact that at great field intensity

saturation of the steel parts of the machine occurs and their magnetic properties

are changed. In this paragraph a mathematical formulation is given for the

problem of calculating the magnetic field in an electrical machine and the

possibility of its solution by electrosimulatiun and automatic digital computer

is considered.

Simulation of magnetic field by a dc field in a conducting sheet. Statement

of problem [2]. Lct the form and location of cross sections of windings with

current and the distribution of current in them be give.i; a form and localion

of steel machine components and tneir magnetio characteristics, represented by

magnetization curves.

It is required t- determine the magnetic inducticn in the air interval of

the machine with the fhl1owing assumptions: the medium is considered isotrcrp.c

with respect to its mignetiz properties; the magnetic field in machine is taken

tc be plane-parallel.

In order to use the method of superposition when deternining of rllds in

steel parts -e take 1r'.o account the nonlinearity of the magnetic characteristic

of steel with element-.ry ourrente of density c, distributed over the -r-ss

section and framew..rk - current, with liwear density T, distributed -',er the

contour of the or os section of -he steel machine components. After that we

will assume that the entire rediun is unifcm wlth oer.ieability e± equ -,: to the

permeability of frec space,

The magnetic field in the maonine may now be represe-ted as formed by •nree

sources: current by lensity t in the cross section of the machine windings;

elerentary currenco 'e-h density in the crcss section -f the steel aachine

components; framework of curre:.t with density i on the contour 7f the cr3ss

section of s-eel parts.

4•;



In accordance with this the vector potential of thb magnetic field has

the form

A - ao In.-,dS, (29.1)

L%

where

4 - Join~s.(29.2)

Function A0 is Imown since the distribution of 6 over the cross section of the

windings of the machine is given (Fig. 56). In equation (29.1) integretion

must be performed over cross sections of all steel

bodies and their contours.

SIn order for equation (29.1) to yield the form

AW ,of an integral equation we express a and T in terms

of the sought quantity A. First we determine T.

Wfe delineate a section of the steel component

of length dt and enclose it in a rectangle abcda.

Applying the law of total current to contour abcda,

we obtain

Fia. 56.

where di - current through surface bounded by contour abcda.

Infinitely approaching sections ab and cl in such a manner so that element

dt remains continually between them, at the limit we obtain

B',d= (B7- BI)dt =pd, (29.4)

where B- and B - are induction in air and in steel respectively.

Taking into account thQ equality of components of intensity on t! ontour

we obtain
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Sine-"

B-ý ---,(29.6)

Kno~re n. - direction of externa~l ±c'- to curntoui L, tnar. des~gnating

for týhe *Iramework of currertA T, we have

14T (P,- 113A-(23.7)

Let us turn tc' detercinatton oý o, In accor!3flce w~th M 9.(ell's first

equatioi:, ip the cr',szs 5cc; in (,r f :.tee! part. we haveIP~ = (29.6)

wriere

a~ I dAt (3B

Bi H. BY 4 -'t'a

Bf dp

d~i I B dH- i( ~ tB

But d>is the dynamic permeability it.. Desig-riatirng zi =..riB

inl (29.12), we obtain



I du ft-I
dB B (29.-13)

Considering what

(29.1)4)

have

aB OB, B•. +B, B, OB 3BBx+Bv Bo21

Substituting (29.13) and (29.15) in (29.11) and considering that

v LB- ,B.+% = 0. (29. 16)ax ay o

we obtain

6B. dB 2
0  OB.I (29-17)POO B2 r- --- 2B".B "

Substituting here

OA OA A B, M3 A
B' Ay$ BY Ap

aB9, MA OB, d'A (29. :82

de= = .. -• =Z-= A;:. BI= A,,2+ Ago

we express o in terms of the vector magnetic potential

= 2A;. + A;2;, + 2AA'A'K,
A22 + A,4z (29.13)

Substituting expressions for T and a into initial equation (29.') we obtain

an integral equalIor for the vector magneti: potential of the fie!- in the

machine

A = ,As -- ,- - 1 InrLd -

L* +(29.20)

)A. + 2 " Inrtd.
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Equation (20.20) can be solved by the usual method, , iie,

integre.1 eqvat3-;ons, i.e., .sequentially substil - ýnde-r tr. r i n',et_.

values A0 , A!, .. , Ak Ak+l, where

kf kr+d;
l dnA, ,ýt - . -- " 1) W nq

,' .2:)

etc., as long as A dif"'ers "x'ým A. by , .' ii- .r~ e U-, .
k+! k

error.

Obviously this solution scheme has mean'r,, :1v -rt ;,-ess c' -

%pproximadions is convergent. In the p-eý.ent weck cue.', r.7 .. s- w-'L

convergence of the crocess are ncG considereid inasnuc as the; . ', :tei.

investigation. But even under t:.e -,)ndi÷ti. • nf .nere - s .

solution of equation (29 .2) is very compiica.-ed an-: b s , .. The.r,>re

it is proposed that equation '29.2Q) ce solved by simu

Before proceeding to an account cf this ouestion we "11 c: ver q eq:a' .n

(20.29) into a more -onrvenient form. Le, zs r-ewi-te ecuatl.o .... .), t

equation ( intc it

dp d(08 8B )S [8,• B D•,,

But from the other side

sin 8y dn 8

where n is the direvtlon, normal • vector - ,Fi. n7, -btinz :

Consequently

xO0 [ May B &x 1)B
t •a' &' el.' =-': a

LayB



Equation (29.20) will be converted now thus:

-A- o+ 1)B-In rdi+

I aB (29.25)

(29.20 or +1) -ýýI ~S

Let us show what vector potential A, satisfying equation

"(9.20) or (29.25) can, by means of successive approximations,

Fig. 57. be simulated by the electrical potential of a dc field in

a conducting sheet.

We take the model of an unlimited plane - an electrointegrator for simnlntion

of particular solution of the Poisson equation (§ 24). Potential of the current

of density 61 appilied to the model on section S is determined by formula

Comparing i.4 with (29.1) and (29.2) we notice that if cross section of

conductor S and density of current in it 6 in a magnetic field are equal to surface

S. and density of cuz:ent supplied to it 61 on the model, then the veotof potential

of magnetic field T will be numerically equal to the electrical potential on

the model U multiplied by !0oy

A =

Equipotential lines U = const on the model will correspond to magnetic 1ines

A = const, magnetic inductionf will be determined from relationship

B PVY(29.27)

weiere n is the direction of the external normal to the magnetic lirne (line

U = const on the model). Finally the magnetic flux tnrough any cylindrical su2'face

between two points M and M2 will be defined as a magnitude proportional t.j the

Vt"ae U.2 between these points on model

4=(At--A )h = Fyh(U,--U2 ) = ¥yhU,. (29.28)

•here h is the limension of the surface in the direction of the axis of conductors

with current.



To model a continuous distribution of current on section of surfa-e modei

S1 by the indicated is obviously possible since we cannot at every point connect

a conductor with current. However it is possible to divide region S into

separate, sufficiently small sections and, assuming within the limits of each

section a constant density of current, with the help of thin conductors supply

to every section the appropriate current. It is expedient to split the entire

:,egion 4nto equal squcres mnd to apply a current to the center of each such

sauare. Then the actual value of potential at any point will differ from the

valuc zalculated from formula (16.13) by a magnitude of erro- obtainea by

replacement the Integra' ,ýth i fin'te sum.

Let u, .nier hnw it i.; possible to odel a magnetic field In a ferromagnetic

meidium. Cbviously thls protL:., renuces to detecting that distributi-n ,•f

:l!ementary current•. i and T for which inteer&-l equation (23.20) or (2.,.93) is

sat, ,'Ieci.

We split the region occi:pied by steel into squares o. equal size *LS arc

the :=ontour region into sections of equal length _1. At the center cf ea:h

souare and also to each section of the contour 1-1 by means of a thin -late we

c e-njet the conductors. The &lg£,rithir of simulation of vector potential A

is similar tc the algorithm of analytic sclution of equaticn (2 .20) -r

and r.,nmains the following opera-ions.

. '- the section tf the model torresponding to the cross section )f tho

winding with •urrent we assign a distrib•.tlon f current in the c-nductn [ _'res

6,-poyb, corresoonding to the distributin "" f curren-t in the winding of ma:hin,-

and tLereby model the "'fld of vector potential A

2. With a probe connected to a zero -alvanoneTe:' .e plot the famil. _

equipotential li•.es U0 onst corresponding to AiMes A 0 =const.

3. Wit'i a double orobe with clstince d. between needles 2ornnectec t: a:.

oro;rdary galvanometer we measure the magnitude of inauction B at in•e-nal pcir-c

-f the region occupied with steel. Ecr thi purpose wc !a-(e the Tr-te

;ýpeadiccu2ar to line U = const.

h. From the fotzrd value of B from the :n netlza'ion curve we fin A ,J.

From Ftg. 58 it is clear p; is determined from thp magnetizatlon curve
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5. Placing the double probe perpendicular to line U const from both its

sides we measure B and B2 at points normal to lines of force at a distance di

between them and calculate

dB AB B, - B,Pn- l = -d

6. We calculate the magnitude of current aI in the conductor adjoint to

the considered square of region AS, determining it thus:

V, = Poo - dB

7. Just as in Paragraph 3 we measure the magnitude of B in points on the

contour of the region occupied by steel anc from the magnetization curve find l,.

8. Analogously we measure B-t. placing the double probe perpendicular to

the contour from its outer side.

9. We calculate the magnitude of current 1 in the conductor connected to

the section of the contour Al.

T, = Py= - y(p, - 1)B-.

After having calculated all al and rl we set their values on the conductors

connected to corresponding sections 'S and Al of the model. Then, just as in

Paragraph 2 we plot the family of lines U = const and repeat the whole process

of simulation in the same oraer until the field pattern plotted for the (k + 1)

the approximation is sufficiently close to the field pattern plotted for the

-th approximation. If as the initial approximation we take a field pattern

differing little from the real one and calculated by the usual method of calculaion

of magnetic fields in machines in the process of successive approximations will

rapidly converge to a solution.
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And computer calculation of static fields in nonlinear media. As is known,

the static magnetic or electrical field in any isotropic medium is describe'd by

the following system of equations (hereinafter the presentation will be conducted

for a magnetic field although all results are directly applicable to an electrical

field also):

div B = 0.
rot~i H(29.29)

We assume here a permeability depending on the modulus of field strength

H: tt=1 (H), i.e., it is nonlinear.

Usually the field sources - macroscopic currents - are situated in a linear

medium. In a nonlinear medium the field satisfies the system of equations

div B 0.

rotH =0, (29. _0)

The second equation of system (29.30) permits Introducing a scalar function -

potential p - from the relationship

H - grad q),

and to reduce syst4 of equations (29.30) to one differential equation f-:"

potential 9

div (/, grad qp) = 0 (2>. i2)

C r"

+ -- = 0.

On boundary of separation of media following boundary conditions hold:

p+ (t) .="• (I), <2.o•
'P+ M M,-•.

an a



the + and - signs designating potential and permeability on opoosite stdes of

the boundary.

Thus in the entire space outside the sources calculation the field reduces

to a solution of the boundary value problem for equation (29.32) with boundary

conditions (29.33).

With defined, sufficiently weak limitations imposed on the form of the

boundary of the media and their magnetic characteristics, there is a basis to

assume that a solution of this problem can be obtained by means of a solution

of a series of simpler boundary value problems of first and second kind in each

of the hcdia separately. However nonlinearity of permeability leads to equation

(29.32) becoming nonlinear and the solution of even these simpler problems turns

out to be exceptionally complicated where for every form of nonlinearity it is

necessary to a special method of solution.

At the same time another approach to the problem of calculation of the

field permits constructing very general method of solution which depends not

only on the form of nonlinearity of the medium but also on the dimension of

region. Let *as show that the boundary value problem of first or second kind for

equation (29.32) can be replaced by the variational problem of finding the

minimum cf a certain functional. Let us consider the functional

J()= F (y, Te Te, yz. x. y. z)dx, dy. dz, (29.34)

where D - region in which the potpntial iatisfies equation (29.32); F - some

function.

So that the extremal of functional (29.34) be potential 9 satisfying equation

(29.32) and the given boundary values it is necessary and sufficiently that

equation (29.32) be the Euler equation for functional (29.3L) [221. In general

form the Euler equation for functional (29.34) is written:

F -- F -- F - 0- F 0.ax ay - ,z

If we consider that F is a function only of x, (Py Pz' then equation (29.35)

takes the form:



T+ -•* + WyO. (2v.+F)9 0.

Here the total differential dF has the form

dF =. F, +, 4+ Fv,dT,, + Fv,,dqe (29.37)

Comparing equations (29.32) and (29.36) me note that tf the following conditions

are satisfied

(29.38)
PT,), + (,+)

that it is possible to set

M'2 - ,, o •+ = ,(29.39)

i.e., to present 4q X, .qy, •+z in the form of partial derivatives i integrand

We have

Tx d(- oh" dx TYh -- x (24.' o)

Analogously it is possible to show that the other two of conditions (2•. 5.)

are satisfied. Consequently

dF = pdd T + + - = . + d (p , + (r)

40V2 A V P~) (29.41)
= F24-1 i+±q2 d•(1/'42 + (F2 + T) = p (H). -llH.

integrating dF from 0 to H /pX +2+T, we obtain the scughz fr,.'","n - n

F(I)= .(H)ndH 1V2 •+pr2+ +T2 (2).4')

x d v2.: + PI,• + T,2)

x •7
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or more concisely

F(H) - BdH. (29. 43)

Let us check if partial derivatives F satisfy equation (29.39).

We have

•F dH ay5

and likewise

Fe, -- PT, ,= .

Consequently functional (29.34) has the form

)+, Y +] (29.44)

or more concisely

J(OF) b~ [[aH.idfV= ~ jBdH J dV. (29.145)

Functional (29.44) possesses the property that it attains a minimum for that q,

which satisfies the sought field equations (29.30) or their equivalent equation

(29.32). If meQium is linear, i.e., LL does not depend on intensity H, then this

functional expresses the field energy in volume D. indeed, in this case

F 5Hdlf (29.46)

and the functional takes on the form

_~rpH' dV-W. (29.47)
2..1



Its minimum determines the field in a linear medium.

As Chaplygin demonstarted his book "On Gas Streams" if one were to set

j~m (29.J48)

that in a flat field equaticn (29.30) will be -:onverted into the equation of
minimum surface. If one were to take 9 = z, functional (29.44) for this value

of • will expreso the area S of the surface bounded by the space contour L
whose projection onto plane XoY limits the region D. In this case

Fd(HI)2' Vf -+H-

i.nd functional (29.44) has the form (we negzect the one).

The minimum of the functiona: will determine the minimum surface drawn over space

contour L.

If expression J(9) is known it is not difficult to replace the boundary
value problem of calculation of a field in a linear or nonlinear isotropic

medium with the problem of detecting the relative minimum 3f the corresponding

function,.1. For instance, solution of the first boundary value problem for
equat:on (29.32) is equivalent to detecting the minimum of functional J(P)
for boundary condition 9(t) = fl(t) (where t - point on boundary of region and

fl(t) - given function). This condition may be written:

Q' q•)= •if, (t) -- 9 (~t)]d = n. (2,•

Here S - boundary of region D.

Really, if we find the potential p at which simultaneously condition

Q(9) = 0 is satisfied and functional J(9) has a minimum that we thereby obtain

a solution to the first boundary value problem.



If ±L(H) is a single-valued function satisfying to inequalities is>0 rnd
dB

0. then function F(H), expressing the area of the magnetization curve (Fig.
dii
58) the function oZ derivatives of potential 9 will be convex, i.e., there will

be a single minimum obtainable under the condition H = 0. Here functional

J(9) will also have a single minimum for H - 0 or, what is the same, when i = const,

at all points of region D. Actually the function 0(x, y. )..... ), is by definition

convex if it satisfies the condition

2 2

for any x, Y... .. , t, •. The sum of any r umber of convex functions is also

a convex function.

Fo every three values x, y, z of the coordinates of the element of volume

dV = dxdydz of region D, F(H) will be a convex function of derivatives of q.

Integration with respect to x, y, z constitutes a summation of convex functions

cver the entire volume of D. Consequently integral J(9) is a convex function of

derivatives of 9, i.e., has a single minimum obtainable during the condition

9(x, y, z) = const.

Fotential 9(x, y, z) is an extremal of -unctional J(q) at assigned boundary

conditions differing from condition 9 = const and can be found approximately

by the method of fast descent. We will look for v:n expression for potential q

in the form of the first n members of any full family of functions Vh (x, y. z)

aJ

km

as is done in the Ritz method. In the expression for P n unknown parameters

a•a will enter. Here solution of our boundary value problem will lead to

detecting n parameters of janl. at which functional J(9) attains a minimum and

boundary condition (29.50) is satisfied.

We replace potential 9 by its approximate value P from (29.51) and substitute

in expression for functional J(i) the boundary condition. Since for a finite

number of n members of expression (29.51) it is impossible bring parbitrarily P

close to 9 then the right side of boundary condition (29.50) should be set

190)
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equal to e>0. The magnitude of e is smaller the higher the number n: it

characterizes the accuracy of satisfaction of boundary conditions.

After replacement of q through P functional J(P) and boundary condition

Q(P) = e can be considered as functions orly n ux/known parameters 4,ti. In

order to facilitate construction of algorithm of fast descent for the finding

of potential o -P. at which functional J(P) attains a relative minimum, we use

a geometric interpretation as is done in functional analysis. We will consider

parameters (akj as independent coordinates of n-dimensicnal Euclidean space

analogous to coordinates x, y, z of ordinary three-dimensional space. Then

boundary condition Q(P) = £ may be considered as the equation of a hypersurface

of the second order in n-dimensional space of parameter Ia.). and functional

J(P) as a simple con et function of these parameters. From the geometric point

of view our problem consists of the fact that in order to find the point

PO(a(,O, 0). a(4)) on the surface Q(P) = E, at which functional J(P) takes a

least value.

Surface Q(P) = E is a hypersurface of the seccnd order - n-dimensional

ellipsoid - this smooth analytic surface is without singular points and ribs.

On the other hand since functional J(P) has a single minimum at the origin of

coordinates (for (a%)= 0), surfaces of level J(P) = const will be closed smooth

analytic surfaces embracing one another. The relative minimum of functional

J(P) will be attained at the point of contact P -(a0)",o9) ... , a(0)) cf one of the

s'-rfaces level J(P) = cor-t with surface Q(P) = (Fig. 59). Since both surfaces

are smooth and surface Q(P) = e does not pas.:

through the origin of coordinates (the trivial

case .Ifr')-cJ'dS = 0 we do not consider) the

.,• normal drawn to the point of contact to one of

the surfaces coincides with the normal to the

Iother S3ur,•u.

In order to construct a normal at any point

Fig. 59. P(a,, at. a,) to a surface of lev, l J(P) = const

or to surface Q(P) = c it is sufficient to find

Jp and grad A in this point. The equation of the tangent plane to the surfacE

Q(P) = E at point PI will be

, 1l91



grad Q., (P - P,) =0.

Consequently our problem consists of finding such a point PO on surface Q(P) = e

at which the projection of J onto the tangential plane to the surface Q(P) = e

is equal to zero.

Let us consider now how to construct the- algorithm of fast descent for

finding point P0 on surface Q(P) = F. The direction of fastest descent to the 0

minimum point of functional J(P) coincides with the direction of its antigradtent.

This direction can rapidly lead away from surface Q(P) = E, we have to find the point

lying on the surface. The tangent plane in a small environment of the point of

tangency in first approximation constitutes an element of surface. We move to

the sought point P0 in the direction of projection of antigradient J(P) on the

tangent plane. With such motion we also will depar, from surface Q(P) = e,

however considerably less than if we moved in the direction of the antigraeient.

Let us anticipate a return to the surface Q(P) = e after every step. If the

step is small then its final point Pk falls on surface Q(P) = a, close t, surface

Q(P) = e. Equation of surface Q(P) = 1i differs from equation Q(P) = E only

with the right side el*e. Therefore a return to the surface Q(P) = E is advisably

made in the direction of the normal at point Pk to surface Q(P) = el (Fig. 59).

For this it is sufficient to plot a straight line coinciding with grad Q at

point Pk' and to find the point of intersection of this line with the surface

of boundai;y conditions Q(P) = a. As an appraisal of the sufficiency of approximation

of point P2 to the sought point PO of minimum of J(P) can serve the length of

projection of gradient J(P) on the tangent plane to surface Q(P) = e. At the

sought point of minimum P0 length of projection of gradient J(P) is equal to

zero.

Point P1 from which one should start the descent to minimuy< can be obtained

thus: at point 0 (at the origin of coordinates) find the direction of grad Q0"

to plot a straight line coinciding with this direction and find the point of

intersection of this line with surface Q(P) a t. This point if it exists, may

be taken as initial point P2 (I'), q), .... , al')). As can be seen from Fig. 59,

it lies near the sought point of minimum P0.

JgJ
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§ 30. Electrosimulation of Distribution of Sinu: Idal
Curre,.t in Current Carriers

The growth in power of electrical generators and differenl electrical

installations led to the appcarance of high-power transmission lLzcs with

r'lyphase currents of great ±t'ne. In connection with this there appeared the

problem of calculation of parameters of polyphase lines under conditions when

simplifications lying at the ba3c cf conception of the circuit, are impermissible.

Polyphase lines for energy transfer with current of great force constitute system

current carriers of large cross section consisting of buses or pipes of different

profile. Sinusojdal current flowing along a given line is distributed nonuniform:iy

over the cross section of the current carrier. A skin effect and effect of

proximity arise. Due to this calculation of the line becomes very complicated.

In order to calculate parameters of the line, i.e., to find its resistance

and reactance it is sufficientý establishing the external voltage of source EO

occuring per unit length of each current carrier of the line, to find the magnitude

of the resistive Ia and reactive Ip components of current in each current carrier.

It is possib]: to find the only by calculating the distribution of current b

density in the cross section of the current carrier. The problem of determination

of the field of sinusoidal .urrent in the citrrent carriers is formulated in the

form of an integral equation. Howevcr the formulation known in literature (1)

is inconvenient for calculation and modeling, therefore we give it here in

modified form. We will proceed from Kirchhoff's laws. Let us consider an

m-phase system of current carriers, The cross section of the k-th current

carrier we designate D. k All together we have m current carriers. Let us take

the filament of current passing through point Q. normal to the plane of the

figure in the cross section of the v-th current carrier (Fig. 60). In accordance

with Kirchhoff's second law for a unit length of filament we can wrIte

+ d -Q E)(Q.) + 0)4>(Q,).

He-e A - complex of current density;

t - complex of internal electric field strength in current car:eier;

0-- complex of magnetic flux linked with a filament of current at pc'Int'4



S-angular frequtxcy of current;
*- conductivity of current carrier material

IN__ IAt the same time, as a result of continuity

of current or Kirc~hhoff's first law for any

cross section of the line the following condition

should be satisfied:

Fig. 60. ~I~~ Y4. (Qd dQ. -o0 (30.2)

Let us consider the magnetic field embracing the line to the plane-parallel.

Fron condition (30.2) it 7ollows that magnetic flux linked with every current

carrier of the line is limited. Let us cla'ify how it is possible to express flux

'D(Q,) in terms of internal field strength in the current carrier. Let us assume

first that along the current carriers there flows a single-phase current.

Flux 0(C,), linked with filament of current at point Q, can L, defined as

the difference of vector magnetic potentials A at point Q and at tny other

point PI' lying on a magnetic line of force differentiating the flux linked with

a current carrier with a forward current from the flux linked with a curront

carrier with reverse current. If the current carriers do not envelope one another

then this delineat 4 ng line of force passing between cross sections of current

carriers Dk, departs further into infinity. Flux on one side of the differentiating

line during its change cuts only current carriers with forward current, on the

other side - only current carriers with reverse current.

Any polyphase regime of current flow can be represented as the result of

superposition of two single-phase regimes. The first regime consists of the set

of real components Ia of currents in phases of the line, the second - the set

of imaginary components I . Each regime, considered separately, will determine

its ownt dividing magnetic line. These lines will intersect in at least one

point P. Let us take the value of the vector potentials on various lines in

both regimes equal to zero. Vector potential A at point Q, has the form

-~ ~ k n1Y ¶ () fQDddM* + C.(30.3)%A27 j

1 k.
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Constant CA will be determined from condition A(P) = 0, i.e.,

AV In rpM dMk. (30.4)

Consequently, flux linked with filament of current at point QV under

polyphase conditions is equal to the vector potential at that same point:

6 (Qj)= A (Q.)-A (P) -=A Q kM r-Qvm d k 305"2 n D k r P lw k

Let us assume that the electrical conductivity y of all current carriers

of the line are identical and their permeability is equal to the permeability

the surrounding medium j±." Placing the expressed for flux in equation (30.1)
(9

and designating ;L poy -T, we obtain

mm

E.(~) E(,)-I A(MA) In r *dMa.- (50.')
1 Dt PM*•

Thus the problem of defining the field of a polyphase sinusoidal current

in the cross section of current carriers of a transmission line reduced to the

solution of a Fredholm integral equation of second kind. However formulation

of the problem in such a form is indefinite. In-Jeed the nucleus of equation

(30.6)Inrq,/krpAMdepends on the position of point P crossing of differentiating

magnetic lines which can be found only after solutio-, of the 1roblem. in spite

of this, condition (30.2) permits unambiguous formulation of the problem.

Let us write equation (30.6) thus:

Ee(Q = (Q•-- %" • b."[ E(M')In ~w/M, ÷C'.(30.7)

Qn(Mr,.VhdMA +C.
14h,



Here

S =. (M InrpA hdM (30.8)

does not depend on point C, and consequently is a constant. At the same time

the magnitude of C depends on the total distribution of E in the cross section

of the current carries of the line and can be determined from condition (30.2).

Let us take the integral overaall of Dk from both parts of equation (30.7). For

brevity henceforth we will designate - f. the area of cross section of all
D mI

current carriers . DA we will designate D:

JtoAQ)dQ= E(Q) dQ s [E (M) In rQ,,dMjd±D.(09

Hence we obtain

In ramdM)[.f$If rQ (Q)ddQ+ (30).10 )

We place this value of C in equation (30.7)

POQ-- E(Q)dQ =E(Q)- - A(InrrQ-

- (30.11I

- .lnr_ d) dM.

0

Equation (30.11) formulates our problem. Let us show that for any distribution

of EO the solution of equation (30.11) uniquely satisfied condition (30.2).

We take the integral over cross section D from both parts of equation (30.11)

It (Q) dQ - a t(AlM)[ (In r,,,dý -- D jIn rQdQ] dM =

..[(QdQ 0,
j5lm•c O
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We designate

QI (A(in r, 4 -- - ~In r,ýdQ) dM TE (30.12)

D

and write equation (30.11) thus:

t(Q)-- TE -- iTIE= At= f (Q). (30.!4)

where 1 - identity operator.

Obviously operator A0 translates any element E of subspace H*, defined by

condition (30.2) in an element of the same subspace, I -. , maps subspace fl,

onto itself. Let us show now that operator T is self ijugate, i.e., the

following equality holds:

(Tx, z)= (x,. Tz), x, zrz II

(parenthesis here designate the scalar product). Indeed:

(r'y. z) [= x (M) (\nl,, I r, d -- Iz-Q)d

DD
- '(M) [z (Q) iIt.rQ,,dQ] dM .A.x (M) JfIn r,,dQ] dM x

4!0 0

x I rjwM]dQ In rxM) ldM = I (x, Tz(). I r

D J
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This signifies that eigenvalues of operator T are real and homogeneous

equation

V x(Q)- ATx 0
has only a trival zero solution. Hence Solution of equation (30.11) is unique.

Will apply the conjugate operator to equation (30.14)

AO = (i + BTJ,
A;Ak =(a +,arl t_ - alt0 = t +;Lrpi = f. + arh (30.15)

Separating the real and imaginary part in equation (30.15) we obtain two
independent equations relative to the sought real Ea and imaginary E components

of internal intensity

E '(Q) + ; t.'T E = 1Oa(Q) '-T1Vf " 
(3 -16E,(Q) + 1"E, fo(Q) + Ar7f. = f,.

The second of equations (30.16) is equivalent to:

E , - fo + ,TE.. (30. 17)

Here

T'E = KE= E (A) K (Q.N) d.V,

A (Q,N)= ~InrrQM - in rQ ,,I 6
%) k'n rACV- IfIn trq.UI,,,dJidM

All ;uantities entering into equations (30.16) are real, operator

A - AA = C- +A 2T is positively definite. Let us cons1ier how to obtain asolution of our problem by modeling.
As is known, potential U of a dc electrical field in an unlimited conducting

sheet with constsat conductivity of unit su:face VA is determined by the expression

U(Q) 1 -- • (M) In rdm + C. (30.18)

1 5y8
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Here 8A(M- density of current supplied to point M of the sheet, D - the section

of the sheet to whose points current is supplied. If the total current supplied

to the sheet is equal to zero, i.e.,

6. (M) dM = 0,
D

then the equipotential line dividing sections of the sheet with supplied and

removed current and extending to infinity will coincide with a differentiating

magnetic line alst extending to infinity. Assuming on this line a potential

U equal to zero, we obtain an expression for the constant in formula (3o.18)

C=-- Co (M) InrPAdM.

The potential difference between points Q and P are defined thus

Uf 8A(M) in r----dMf. (30.19)U U(q = 2ay., rPA,

From a comparison of expressions (30.6) and (30.19) one may see that

potc.ntial U can be used as an analog of components of internal intensity E in

current carriers. Instead of unlimited conducting sheet can be used its model -

the electrointegrator for simulation of a particular solution to the Poisson

equation (see § 24).

The center of the lower circle of the modelling element of the integrator

corresponds to a point at infinity. Since the differentiating magnetic line

passes through this point can always be taken as the unknown point 2 and all

measurements of potential U can be made on the model with respect to the center

of the lower circle.

As we have seen, equation (30.6) together with condition (30.2) is equivalent

to equation (30.11) and, consequently, equations (30.16) containing only real

quantities modelled by a direct current in the electrointegrator [33].

Application of operator T2 = K to element E is equivalent to the following

operations on the electrointegrator:

199



1) establish current in sources connected to points of region D of the

upper circle of the model proportional to 2 nyxE;

2) measure potential U at the same points with respect to a point at infinity;

3) establish new values of current in the sources proportional to 2fy.aU.

After this the potential U of the field of cur-nnt in the model will be

proportional to the result of operation 7E-KE7, n-fold application of operator

K to element E obviously is equivalent to n-fold repetition of this sequence of

actions on the model.

Consequently, for simulation on an electrointegrator of the field of a

sinusoidal current in the cross section of conductors solution of equations

(53.16) must be presented in the form of a convergent sequence of operations

KnE The method of successive approximations under certain conditions leads to

a sequence known the Neumann series [14].

The nucleus of equations (30.16) K(Q, N) satisfies the conditions

• IK(Q. N)j'dN < oo,

(30.20)

£ ;K(Q. N)i'dQdN=B2< .

As is known [14], during fulfillment of these conditions the Neumann series for

equations (30.16) absolutely and evenly converges to a solution at r if the

following inequality is sati!.fied:

XIIK I= 2B< 1. (30.21)

Thue, if inequality

< (30.22)
1 / lifK(Q. A')jtdQdN

is not satisfied then the Neumann series cannot converge.

The left part of inequality (30.22) is determined by the properties of the

current carrier and surrounding medium and also the frequency of current: the

right part on the location and dimensions of cross sections of the current

20O



carriers. In practice the necessity of calculation of current carriers appears

when the dimensions of the cross section exceed the depth of penetration of the

electromagnetic wave. In this case inequality (30.22) is not only not satisfied,

it is replaced by the reverse inequality.

We will demonstrate this on an example of calculation of two current carriers

of circular cross section with diameter d, distance between centers of which

equals 3d. Let us estimate from below the magnitude of B. From the symmetry

of the cross sections of the current carriers and distribution of density of

current in them, it follows that the dividing magnetic 2ine coincides with the

axis of ordinates. Let us combine point P with the origin of coordinates, point

0. Then, considering that e(M) =-E(M'), OM=--O1'. equation (30.6) we will

convert thus:

e.Q)= t(Q)- ( if) In ( rM___ dM. (30.23)

or, performing a transformation analogous to that which a yielded equation (30.16)

EO(Q) = ES (Q) + •t' E (N) K (Q. N) dN, (30.24)

where

K(Q. N)= .f In In -M'v dM.
rQU, rx&..v

For appraisal of magnitude B it is sufficient to estimate from below the norm

of operator T = K

UKII fsup I1KE,11 IKC- = r. In--ln.. (3C.25)
D

The following inequalities are evident

In Q'I;.¾ I In IIn2, --n > In 2.ro• r2,d
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Placing them in (30.25) we strengthen inequality

IKK 11 (in 2)r dMdN (-3) (in 2)'.

Consequently

XB > X -& In 2.

Will find the magnitude diameter d for which the right side of this inequality

is equal to one:

2 1,35
SV2 n2 i'V---*'

For aluminum at 40°C

1 ~ "-7 ___s
y 0-10I1 p=po=4n-I, (aTn~ = l00.tx

1.= •Y•= 1,885.10 - do4 = 3,1 c.

For copper at 400 C

¥ = 52,5- 10 Is 1 do., = 2.35 cM.

Consequently, if the dimensions of the cross sections of the current ca:riers

exceed the magnitude of d0 then we cannot use the method of successive p poroximations

in usual form for construction of an algorithm of simulation of equecions (30.16).

However the methods of functional analysis permit presenting a sclution to these

equations in the form of a convergent sequence of combinations of operations K"E

in the case when inequality (30.22) is not satisfied. Let us show how to obtain

such a sequence.

Let us record equation (30.16) in the form:

AE-f. (30.26)

We will designate p. - eigenvalues of self adjoint operator T. Eigenvalues of

2 2operator K = T- , equal to L, are real, positive and form a denumerable set with

. • = .= ml = .m m . , 1. 1 , m m



point of concentration at zero

0< gq~,2 .

Eigenvalues of operator A equal

V , + x

Will designate m and M the lower and upper bounds of the spectrum of operator A,

respe.ctively,

M =I4CV1 < I +)2P,= M <I + X2 t/liK(Q, N)jf QdN.

We replace equation (30.26) with

E=P.(A)E+Q.(A)f, (30.27)

where Pn(A) and Qn(A) are n order polynomials of the operator A. For equivalence

of equ-tions (30.26) and (30.27) it is necessary to satisfy certain conditions

[8). Let us find them. We have identity

AE-f= P (A) (AE-f),

or

AE = P.,(A) AE +- e -- P.(A)L. (30.28)

Under the condition 11P. (A)II< I solution of equation (30.28) coincides with solution

of equations (30.26).

Applying the inverse operator to both parts of equation (30.28) we obtain

E-- P. (A) E + A-' 1%-- P, (A)l f. (o2

From comparison of equations (30.27) and (30.29) we find

Q.(A) = A-11% - P.(A)I.

Thus for equivalence of equations (30.27) and (30.26) it is necessary and

sufficiently that the following conditions be satisfied:

20.11
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Q, (e) =I - P.4 (,

P4(o)= Im IIPa(A)II < , (30.30)

where e is a parameter.

If conditions (30.30) are satisfied then equation (30.27) can be solved by

the method of successive approximations and its solution coincideu with the

solution of initial equations (30.16). So that the process of successive

approximations yie ds a solution as fast as possible it is necessary to select

polynomial Pn(E) in such a manner so that the norm of operator Pn(A) is as

small as possible. This can be reached from the following considerations: if

the interval of change of parameter E includes the entire spectrum of operator

A then the norm Pn(A) will not exceed the biggest value of Pn(e) on this

interval. Therefore for the construction of polynomial Pn(e) we use Chebyshev

polynomials as was done in [9].

The Chebyshev polynomial deviating least from zero on segment f--|, |], has

the form [i0]

Z. () ff •-v(n arccos x)=
T. (x) 2'

S(x+ = r + a"- -+ +"" + a,.
24

Convertin6 segment [--|,I| to segment [m, M], we find

M+m
xM=a + -b 2 (30.31)tM4-- m -- M

Passing in polynomial Tn (x) to i',e new variable a, we obtain

T.(a, + b) = a"8" +... + ao + b + a +...+ alb=

=a,,m +".. + T4 (b).

In order to satisfy condition Pn(0) = i, it is necessary to set

p. (a) T "(at + b) 
(30.32)

T. (b)



FIT

The biggest absolute value of Pn(e) on segment [m. M] equals

mx tP.(,)I- I max IT.(ae+b)l-
sp..N1 I r T.(b) I,.,J

max IT,. (X) I

Consequently

I.
lP. (A)i 11 (,.,Ibi<30.33)

We will show thatI Pa(A) I 1. We have

T. (b)=-- 1+
75" [= +-(n--

21__ b2-

hence

2-' 1 )IT.; -" (b) l b-" M + 1 (30.34)

Placing values for a and b in formula (30.32) we obtain an explicit expression

for polynomial Pn(E):

.- ) + (rn-a ) + 2 P" (M -- )(m- e) ( 3 +

+I(M-) + (m -+ )--2'(M--)(m-) (30.35)

We will show that the iterative process conducted in accordance with algorithm

E =1 , E" = P_ (A) E"-" + ,Q (A).,F (30.36)

absolutely and uniformly converges to a solution of equations (30.16).

For the m - i-th iteration we obtain

Et-1) = P,, (A)E•"-') + Q4 (A)f.

The difference of two neighboring iterations has the form

' - E(-"-' = P. (A)(EF-i) -(E--) J LP,(A)'`1 (E(') -- E).



Assuming E(0) = f we find

E("'-f, P.(A)f +i Q.(A)! -f =[(I AQ.(A) -+-Q.(A)--(Iff

-Q, (A)(•- A) -I -tKQ,(A) f.

Consequently,

IE(N--Ec'-"l= )$ 1K(Q. f,) I" Pa(.4) I.-Q,(A)fl VdN 4

<11/j K(Q, N)jdN. VLP.(A~r,1Q.(A)AI'dN= (,c0 37)

-a*, 11 (P. (A)IM-1 Q. (A) I I! < a* 11 P,, (A) 11"•

He,-e the constants are expressed by the formulas

,,,= IV FK(Q.N~dV a a,," Q(Afj

Considering that

11P.(A)II = q< I x E(• Elm-- 1)! a*qm-1.

We conclude that the series

EM) + (EM -- E') +... + (EO" - E(m'-')) +...

converges absolutely and uniformly a solution of initial equations (30.16)

not slower than the sun of members of a geometric progression with exponent

q < 1.

Let us apply these results to a concrete problem. Let us consider a

transmission line for energy of sinusoidal cu" it consisting of two aluminum

current carriers of rectangular cross secti .. Dimensions of the crc'-. sections

of the current car--ters is 3 x i0 cm , distance ,atween them 3 cm. The integral

equation for this case coincides with (30.24). By approximate calculation by

means of replacement of the integral by a finite sum, we find

PKI. K(,N)j1'2dQdA' 4 (30.38)

<j lin LQ-m dQdMI<109-0sAl
S'"" " 1/,M'



Dimensions of the current carrier cross sections D, exceed dOa and inequality

(30.22) is not satisfied

,%'=3,55. 10'» 1>> =9 9. o1,09. 15-3

Therefore the usual process of successive approximations for solution of

the equation will not apply.

Let us use the above mentioned method for obtaining a cor,,ergent process.

Considering n = 1 in formulas (30.30) and (30.35) we have

2a , I P, (a) M+2 (30.39)P, ()' 1- I-M -+I ; Q, (e M + I

Substituting these values in equation (30.27) we obtain

2E=P1 (A)E+Q 1(A)I=E- M+1 (AE--f= (30.40)

"-alKE + ae + be,

where

- 2).' M- l 2
22 M+I ' M- M I be 2 (30.41)

We write the norm of operator PI(A)

Pt (A)11 = 1 I1 M+1 0.95.

Obviously, convergence will be slow and for production of a result with

small error it is necessary to perform a large number of iterations.

Let us consider the iterative process when n = 2.

P,(e), 1- I+ 8e M M
(30.-42)

Q,(e)=8 M+m-e
M' + 6Mm +m-

.(11
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Substituting in equation (30.?7) we find

we re -" + (A (Af"'- -- )-- (M + I) (E(N-1)-,

where

8
2M'+6M++I

Substituting here AE=E+.t"KE. we obtain

E(" Y; 4K''-'" -- Y12(M-- 1) K2E"--" + (I -- yM) t-') (3043

-- v.'Kf + 'jMf = aIE"'- + a1KE('') + aGE'- + bKf + b (f.

We write the norm of operator P2 (A)

""P( I - I -0,825,

".T~l~bN' 2 ),b- I + (M--I?

i.r., I!p,(A)ll~lI&(:. Consequently to obtain a result with the same accuracy

as f'•r n = 1 we now require almost 4 times fewer iterations. However the duration

of each iteration will be twice as great as for n = 1 since it will be necessary

each time to model the term K2 E.

It is conveniently to perform simulation on two identical models of an

unlimited conducting sheet - electrointegrators with identical modelling element.

Joining sources of current to points of the first model within the limits of

sections Di and D2 , corresponding to the sections of the current carriers Di and

D2 , the current in the sources is set proportional to E(m-i). The potential of2,9 a

the field of current in the model will here be proportional to

E("--') (N) I rMN tiV.

Having measured the values of potential, a current proportional to them is
II I

established in the sources connected to the same points of sections DI and D2

on the second model. The potential on the second model will be proportional to

IKE(m-i). To obtain the term A -i) kfKE -l)) it is necessary to repeat

aZ



the operations on models. Measurement of potential on the model should be made

with respect to a point at infinity, i.e., with respect to the center of the

lower sheet. Only in this case will the total flux O)(Q), linked with the filament

of current at point Q be taken into account. The sum of currents in the current

carriers of th. line is always equal to zero. Therefore the voltage between

any point cf the model and a point at infinity is limited.

Simulation is carried out until we obtain

After termination of the process of sirAulation on models it is easy to measure

not only values of 2a and Ep but also all the remaining quantities of interest

when designing a current carr er. Supplying each cross section of a system of

current carriers on elentrointegrator from its own cross section of buses, It

is possible to measure the integral magnitudes characterizing the resistance a')d

coniuctivity of the system of current carriers. Simulation can be performed

on a single electrointegretor. Here it iF necessary to record at every point

of sections D and D2 all intermediate values of results of measurements o"

potential.

§ 3i. Computer Calculation of Paramecers
of a Three-Phase System

of C-irrent Carrier

The thickness of the wall of industrial current carriers usually does not

exceed the depth of penetration of tn; electromagnetic wave and varies from

I to 2 cm. This circumstance facilitates application or a numerical method of

calculation of the field of current in the cross section of current carriers

allowing application of the algorithm presented in § 30 for calculation on an

electronic computer. Integration over the cross-sectional current carriers

may here be replaced by summation over the contour of the center line of the

cross section. For practical calculations with replacement of the integral by

a sum it is convenient as the element of area 6S to take a square with side

equal to the thickness of the wall of the current carrier. Distribution of

density of current along the direction of the normal to the external contour cf

the cross section of the current carrier can be approximately taken the same as



during penetration of a plane wave in a flat conducting wall. With computer

solution of the problem time is saved and the necessity for a specialized modeling

dev'-e is eliminated.

Current carriers of a three-phase transmission line usually are disposed

symmetrically about the vertical axis either in one plane or so that their cross

sections fall on the corners of an equilateral triangle. So as to r-educe the

volume of calculations and to economize the fast store of the machine during

composition of the algorithm we will use symmetry. For this we shall 2.ývide

the three-phase symmetric operating conditions of the line Into two single-phbse

consisting of a set real components Eoa of emf E in phases of the line (I

regime) and from a totality of imaginary components EOp (II regime). Let us

take emf EO in the second phase equal to one [3):

1 2•--! E•- (3i.i)
I regime: --- 1- E. (3-)

Ii regime: E (31.2)

Equations (30.16) are altered thus:

Eat (Q) +X'TE 5 = Ew(Q),
I regime: (31.3)

I! regime: E (Q) I -- =TEp.(3

All quantities entering into these equations are symmetric relative to the

vertical axis. Will designate quantities on the left side of the axis of symmetry

by the sign "*", on the right we leave the designations unchanged: D and

D,- areas of cross sections current carriers to the left and right of the

axis of cymmetry respectively (Fig. 61)

We have

~InfQc.N.dQ* In ~fr,.dQ, In rQ.,,dQ* = ItnrQ,.dQ. (31.5)

For I regime E(M*) E(M); (31.6)

021)



Fig. 61.

for II regime E(M*)=-E(M). (31-7)

Let us convert tile expressions for operazors T and T 2taking into account

these conditions of symmnetry:

,for I regime TE=EAOIr - 'rQddM

TIEf E(M)(In rQN:Q + jIn r,,M.QdQ) dM.

Du

KEM*(Q. ,m.f (m nrMN.rw.dN--+ ilnrMN.rM.dM'x(+.p

a

K,(Q =r *nr,,r. If l nrQJ *rQ~d dM- 0

QMI rQMDrm j /n M ~wd M

D21I



for Il regime 

dM 
(31.10)

T21E =K 2E = E (N) K2 (Q, A)dN,

(31 .1)

Ka(Q. N)-j In In r, dM.
Do rom. r..,,

In these expressions it is assumed that during integration with respect to M

in Do symmetric element of area M passes the entire cross section D . Let us

replace equations (31.3) and (31.4) by their equivalents as was done in (30.27).

During computer calculations the number of iterati'nz may be alloweu to be very

large, therefore as polynomialP,(A4we select a polynomial of first degree.

Equivalent equations have the form:

M--M 2
G+) (92, (2 (P2)

2+ E Oa)-M+1 E(s) (p) (31.1i2)

E{,, (Q) = (± P. Ti)E(w).

Subscripts in parentheses above pertain to the first regime, below - to the

second.

The algorithm of solution of equations (31.12) will be such:

EM" (Q = E (Q).

)M-- 2 ,P

(:511,5") M- E+M1 E)(Q) ,)(

2
-+ , + I E(O') (Q).

For determination of the upper boundary AI(I)of the spectrum of operator A we

use inequality

of,12
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M(0)C 1 +) is 4~ K(ý') (Q. N) I'dQdN. (1i4

Summing components Ea and Ep of both regimes we obtain the cross-sectional

distribution over cross sections of the current compressing the intensity 4z
of the symmetric three-phase regime, E., - coinciding in phase with external

voltage Ee, applied to the second phase and E -- leading E,,by T.

Integrating E., and E over the cross section of second phase, we find

the active and reactive components of current in second phase

.,=j vyE4S.

(31.15)
1,, = yE. dS.

If cross sections of the current carriers are located symmetrically in the corners

of an equilateral triangle then the active and reactive conductance of a unit

length of current carrier of one phase, for instance the second, are deftned

thus:

902 b 'P2-(31.16)

The total conductivity orf a unit length of current carrier of second phase is

The resistance of unit length of current carrier of :econd phase

*.2 !."VI;2 * I .,•I. 2 +)• ;2, + 12

rM + 120 X02= 2]l Z0ý
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Algorithm of solution (31.13) was compu'er programmed. The program, intended

for use of only the fast store of the machire, consists of five main parts each

of which executes an independent function: leading part, calculation of norm,

calculatior of K (Q, N) and E(Q) for I regime, calculation of K2 (Q, N) and E(Q)

for II regime and calculation of parameters. Leading part of program intrnduces

initial data and controls count. Initial data are:

a) coordinates of points x and y of center line of cross section of wall

of current carrier selected at identical intervals;

b) parameter I pyf, dependi-g on frequency of current and properties of

material of current carrier;

c) external voltage E0, per unit length of current carrier of each phase;

d) v - thickness of wal.l current carrier;

e) accuracy of calculations E, achievement of which terminates iteiative

process.

For calculation of norm and K(Q, N) it is necessary to calculate a series

of integrals of the form

rIn . [dM; In -L -- dM; In r-m in .... dM;
QMf r'V. i rQ,. rA1.N

If¶' " -r. II rQ-rQM.dQ In rMVr (311

--- 1, inr.V rM.V, dM dM.

where r - distance between points of different cross sections. Let us present

the first of integrals (31.19) in the form of a sum of two integrals

rQM 1" rQA. I

whereAD= AD, +2AD 2s-element of area in which points M and Q coincide (Fig.

62).

214.
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We will replace f!lnLý9-I2 dM with a finite sum and In r A4 dM we"QN.oJ, -I i ri.

calculate in the following way:

Iln - 12 dM LIn n-2w IIdM +2 f r'- ~I'--d M
IQ 9 .I InQM'

D, DZA 
D

v, _ + h(v -h) (In rt"2

Fig. 62.

=4ILIn(xM.x)+
h In (x.xQ) +(y. -y,)21. (i )

+ (v - h) h In' 4 V(xN. - xQ? + (YM.- yQ)'

Here square AD, is replaced by a circle of the same area. Consequently the

integral can be written:

I jw2 -dM Inr. h +h n 22
('I M ~ ~ rQM\2 A'

--2ln------I --41nV(xM.--xQ'+(yM.--yQ�+ ---- I + (3.2r

-2 l~t.+4 InVTxM. -- XQ)
(31.21)

.+ 4 [in if (xý.- 2 )+ (YM. -QY yo,+

+ (v- h)h nt" 4 V(x N. - XQ)s + (AIM. -YQ)'
: v+h

The remaining integrals (31.19) are calculated analogously.

The operational scheme of the program has the form
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S,,P,1-0-4 3,L.P. 3.9 P.. 3.L ..L..L.- ,. . . . . 1 _ ......I '" ."I

LP 3J P 3 17,S L19L2 P, LZL,~,I 4

PIT4 I 14-4 61 1-4 19-4-1 394

Here the operators have following meaning:

S - introduce program and ir.iti~l data;

PI - determine if all variants are counted;

32 - dispatche initial data of the i-th variant to the working field;

02 - form a series of instructions for realization of dispatching of
initial data of the i + i-th variant;

L4 - calculate

M-a1 2M+I 2
o-M+-I' a-KM+-I bI= M+I

P 5 - determine for all points Q if K2 (Q, N) of II regime calculated;

3s - select XQ,, yQ,; xN., yN. from array of points Q and array of points N;

P7 - determine for all points N if K2 (Q, N) is calculated; of II regime;

3s - select xvN, yN, from array of points N;

L9 - calculate K2 (Q, N);

L - calculate K.-(n)

Lii- calculate E 2 (Q) of II regime;

P12 - determine if inequality

LP (q)-EJ- (Q)l < 8;

is satisfied, simultaneously for all values of Q;

Li 3 - calculates Ea 2 (Q) of II regimes;

P14 - determine for all points Q if KI(Q, N) of I regime is calculated;

3 - select XQ,, yQ,; xN,, yN, from array of points Q and array of points N,

P16 - determine for all points N; if KI(Q, N) of I regime is calculated;

317 - select xv, Yv, from array of points N;

L1 8 - calculates KI(Q, N);

Li9 - calculate K-E(-);

19 zla;



L2 0 - calculate E•')Q I regime;

P2! determine if inequality

I B.V (Q)- (Q)I <

is satisfied simultaneously for all values of Q;

L - calculate Ep1(Q) of I regime;

L2 3 - calculate EZ (Q), EPZ(Q), 13, I., E(Q)t, argA(Q).ro.Xo.Zo.

7t, - stop operator

If the cross sections of the curren~t carriers are not symmetri.2, parameters

of an r-phase system of current carriers are arbitrarily understood to be the

proportional factors between currents Ik in the current carriers and ti., voltage

drops referred to a unit length of current carrier ukO in circuits consisting

of two wires of which is taken as a reference for the entire system

L,,.=k,,-k. (k= 1, 2,. .. m rn-,). (31.22)

Considering that the total current zero, we can write

,, 0 = 1,z,, + 1,122 +... + 1_,z1,m,_,,

(31.23)
_,o= , . + ,2Zn-1.2 + ... ±/,,_,Zm,_.,,_.

These relationships interconnect the currents in the cux rent carriers of a system

with voltage drops in the circuits. Considering them as equations for the

determination of (m - 1)2 unknown parameters zki we conclude that for determination

of all parameters in general it is necessary to calculate al! currents and voltage

drops of the (M n-) different operating conditions of the current carrier.

For a three-phase system of current carriers it is sufficient to compute two

different conditions

U1= ;Z1 IC + 'A 1 11 +1212,

=o /;Z1 + , ""0- .U- -!2 + ,

Solving this sjstem with respect to unknowns Zik, we find them.
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CHAPTER V

MODEL FOR INVESTIGATION OF VOLUMETRIC FIELDS

§ 32. Difficulties of Modeling

The most effective means of determination of a volumetric static field is

its modeling in an electrolytic bath or in a volumetric grid with a dc field.

However during modeling the appear defined difficulties connected with nonuniform

field intensity. For solution of one or other technical problem usually it is

sufficient to know the field in a small volume, in that part of it whicn

determines characteristics and properties of the electromagnetic arrangemen, -ing

designed. But then in this volume quar+ities characterizing the in-tensity of

the field have to be determined with sufficient accuracy. This means tnat the

scale of modeling must be relatively large.

The field of the object spreads out without limit, occupying all of the

surrounding space. In order to model only a part of it, it is necessary on the

boundary of the model to carry out the same threshold conditions whicn take place

in the actual field of the object on the imagined boundary of the volume cf the

modelled part. To find values of quantities characterizing field intensity on

some surface is just as difficult at any other place. Therefore it is necessary

to model large volumes of the field trying to approach the natural boundary

conditions, i.e., to ensure in the model disappearance of the field at its

boundaries. Dimensions of the model are always limited and the mcIlr•° soaýe

must be selected very small. In this case the model the section of tne field

which is of interest also becomes small, the accuracy of modeling ir.a the

accuracy of measurements on the model drop sharply.

In separate cases it is necessary to model the field in a relot-v ly !airCe
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scale in a region of such large dimensions that it becomes immediately impracticle

to construct a model the entire field. It is necessary to mcdel the field in

sections. Here the problem of preliminary detecting of boundary conditions on

the boundaries of the sections again arises.

Let us define an element of unlimited space as a mentally a region of finite

dimensions deliniated within it. The element can constitute a volume, a

section of surface or, finally, a segment of a line. Difficulties with guarantee

of conditions on the boundary of the model would disappear of themselves if

the volume of the model (or at least its part) possessed properties of an

element of unlimited space similar to it. In distinction from the mental

boundary of an element, the boundary of the model is always the physical interface

of two different media. The field of sources in the model is reflected from its

boundary, the reflected field falls on basic field and the resultant turnr out

to be different from che field of the same sources in a similar element of

unlimited space. Thus the boundary of the model (wall of electrolytic bath of

boundary of a grid) introduces a distortion in the modelled field. It is of

great interest to construct a model for modeling a field whose volume would

possess the properties of the corresponding element of unlimited space. No

attempts has been made to construct a model in which the field of sources would

not be distorted by mapping. The orignal work of Bogolyubov and Shamayev [5, 6]

containing a description of the models - an electrolytic bath with semiconducting

walls - and L. V. Nitsetskiy [17] on grid attenuators for baths are well Known.

However all earlier constructions are technically difficult to realize or costly

to manufacture and, most important, are not universal since their properties

depend on the location of sources in the modelled field.

Below are expounded the principles of construction of electrolytic baths -

models of elements of unlimited space. The mapped field in such models in a

defined region of their volume is small for any distributions of sources of tn'.

modelled field and properties of the medium filling the model. The following

problem is posed and solved: find the form of the surface of walls of the model

and tneir structure ensuring an expedient m4 nimum of distortions of the modelled

field in given region D, independent of the location of the field sources and

properties of the medium in which it must be modelled. As .,Ill be evident from

what follows, such a formulation of the problem is correct ana problem has a
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unique solution if a metric Is selected in which distortion is minimized.

Before going on to a solution of this problem let us present a derivation

of the necessary relationships.

§ 33. Green's Theorem

The theorem of Gauss can be formulated in such form:

E.dS= ;divfdV. (33.1)

Here V - volume bounded by closed surface S; En - normal component of vector E

on surface S.

We set E = grad T, where - and r are arbitrary scalar functions. We have

div, grad q = grad V grad T + •Aqp,

[* grad ipj. =- *

placing these values in the formula of Gauss we obtain

al-l dS grad,p grad -pdV + j *AqdV. (33.2)

Substituting now E = T grad u. We have

div 9 grad V = grad q grad V +q Ap.

[9 grad *I,, = Tnn'
an'

s (grad T grad VdV + qAi dV. (33.3)

Subtracting equation (33.3) hm (33.2) we obtain

ýVý-L1d?'= jA9v1j (334)

4 d On j~~[~pqA4IV
Instead of v we take a centrally symmetric solution of the Laplace equation -

function i/r, where

r= V (x - XJ + (-- Yo) + (Z - zO)2.

At r = 0 it undergoes a break, therefore in order to apply formula (31.4), we

separate point (x, y, z'. where r = 0, surrounding it with a sphere of small

radius ri.
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On small sphere AS or radius r1

a9 0in- F r W -n,•' r 72I

Therefore with contraction of surface AS to point (x. y, z) in the limit we obtain

lim dS= i[j- fl dSj = i[--'kzr, =0,

dS =(li -, dS= im
ASm( as{l

Here )T/)r and T are mean valies on surface AS of 9/ýr and 0.

.nsiaering that A6i/r) = 0 and substituting values of limits in formula

(33.4', we obtain the well known Green formula [22-1

1 ; A9  L9 0 (I) dS.
-- 4-•" d- r- r r33'-5)

If point (x, y, z) lies outside of volume V then the left siae of this formula

becomes zero. Green's theorem (33.5) shows that pntential 0 (function having

continuous second derivatives inside closed surface S) is fully defined at every

point of the space limited by this su;rface if we ?nrw:

1) density of field so, T -(t) at every point Df volume V; here

p- volumetric charge density;

2) value of function P at every point on surface S;

3) value of derivative w;ith respect to normal )9/)n at every point of surface

S.

In order to clarify tne meaning of integrals inn formula 1,33.5) we will

consider the field of a system of two equal charges q of opposite sign i.ceted

at distance I from each oher. Vector p = oT is called the electrical moment of

such a system, vector is considered directed from charge -q to +q. if wi-h,.ut

limit we bring the charges together, preserving a constant moment T, then at the



%\ limit we obtain a dipole. The potential of a

dipole at arbitrary point M equals:
I A

STiraq r, q
-urn-1,0o 4ne r~r,

b) But as can be seen from Fig. 63b
lir (r, - r) = I cos . lirn rr, r2 ,

Fig. 63. 1.0 1.."
consequently

_(M) q ICOSO pcos8 pcos(r.d)

4ire 4, - 4art

We return to the Green formula (33.5). We have

a (1) =a I)ar Iar (33.6)

From Fig. 63a it is evident that

dra Ar
- = li -= C-Cos = -CM(,.1).
a~n &,o An

Consequentl±o

=I cws~rn)

Potential 9 in general satisfies the Poisson equation
Ay = Q.

Considering this, formula (33.5) can be altered thus.,

ip qCos (n~r)~
V a

Let us assume that S is the surface of the conductor (E = ), then on it

= c - const

,.m[! ',(- s ' d]- = C 00 + 4n) c.

Here AS is a sphere of small radius r1 with center at Doint (x, y, z) where r = 0.
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Consequently in this case

I ý , I(:5+.8)

potential ( consists of potential q), field of charges by density p distributed

in volume V

----- Y"•ql izi V-;- (33.9)

and potential p2 of field of charges of surface density c induced on conducting

surface S

-+C. (353.10)

Potentia' 2 is called the potential of a simple layer of charges.

Let us assume now that S will be the surface of an ideal dielectric with

S= 0, then on it 69/)n = 0 and

(X, 9F. 2)=cIsI rdn)

Magnitude EqdS may be regarded as the electrical moment of a dipole at a point

on the surface S. Then the integral over S will constitute the potential of a

double layer of induced dipoles on the boundary of a dielectric. Mcments of the

dipoles are directed normal to surface S.

if S is the interface of two dielectrics with different vermeabilities

E I / E 0 < E < w, then it will exist both a single and a double layer of charges.

§ 3 4 . Formulation of the Problem of Construction of a Model
Element of Unlimited Space

We return now to the problem stated in § 32. Let us apply the analogy of a

"dc field in a conducting medium to an electrostatic field in a dielectric and

following presentation we will conduct in electrostatic terms (34].

Let us consider a bath with in.alating walls filled with a medium of

specific conductivity -y. To different points in the redium are supplied currents

or, as we have stipulated, in the medium are distributed sources with density p.

The conductivity of the bath walls is zero, therefore using formula (33.11) we

can write an expression for potential 9 at any point (x, y, z) of volume V of
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batn of limited surface area S of its walls:

Y r 4n .V rOn (34.1)

Here n - vector of external normal to surface S

"r = I/ (X - x0) + (q - YJ' + (z - Zor.

If in the bath there is s free surface of clectrclyte Si, then during integration

should understand S to be the surface of the walls of the bath plus its mirror

image in free surface SI and V to be the volume limited by the surface of the

w.lls and its mirror image (Fig. 6 3a).

From formula (34.1) it is evident that no simple layer of charges appears on

the insulating walls of the bath and the field in the bath is distorted only by

the double layer of induced dipole. Our objective is to decrease the potential

of distortion introduced by the walls and to achieve a potential 9 which differs

as little as possible from the potential of the field of sources p. Noting that

the second integrand in formula (34.1) is proportional to the value of potential

q•(Xo yOI Zo) on the walls of the bath, we will try to compensate the second

integral with potential of an artificially created simple layer of charges on the

walls. This can be done as Collows: < cer the insulating walls a metallic housing

is placed on the bath and ln the walls are drilled small holes. Each hole,

after being filled with the conducting medium poured into the bath will connect

the internal volume of the bath with the metallic housing and play the role of a

surface charge 6q since to it lines of flux. will converge. Let us take the

potential of the housing equal to zero. Then the magnitude of such a charge will

also be proportional to potential 9(xO, YO, ZO) and equal to

Aq =-- (X0, Yo, z)g o,

where go - conductivity of column of medium filling the hole.

If holes in the walls are made sufficiently frequent then their action is

as close as to the desired action of a simple layer of charges with surface

density

OL--•gy =-V g,1.

where g, - conductivity of holes present on a unit surface of the wall. Potential

Po(x, y, z) caused by the influence of holes has the form

%(xay,Z= F d (34.2)
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The resultant potential now will be:

(dS = '% + q,. (34.3)

Here

9'nJ r
V

91 - potential of undistorted field of sources

92r ( n: g) dS, (34.5)

92 - potential of distortion introduced by walls taking into account the influence

of holes in them. Conductivity of holes g can always be selected such that at a

given point (x, y, z) the potential (2 becomes zero. Our objective is to make P2

as small as possible in all points of the given region D.

The integrand in formula (34.5) constitutes the product of potential

('(Xo, YO" Zo) and a purely geometric quantity I I Or

Potential 9(xO, Y0 2 Zo) is determined by the sources and we can have no

effect on it. However we can change the magnitude • 1 a g and thereby

effect the potential of distortion 92" It is possible to decrease 92 by increasing

r, however this is inexpedient since it will lead to an increase of dimensions

of the bath. There remains on possibility to reduce 9 at the expense of

expression - - . depending at a fixed r on conductivity g and direction

of normal F.

The direction of the vector in space is fully defined by the two angles

which it forms with the coordinate axes. Consequently it is possible to

decrease potential T' influencing on three magnitudes: conductivity g and the

two angles of determining the direction of normal n.

Depending upon the character of the solved problems during modeling of a

field in the bath we will select a suitable form of region D - element of

unlimited space - and metrics in which it is expedient to look for minimum
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distribution of T2 in this region. Then minimizing the functional (norm of

quantity M r- -e) in the selected metrics with respect to all three parameters

at every point (X0 , yo, x0 ) we find the distribution of conductivity

g = g(xo, yo, zo) and field of unit normals n0 which in turn determine the

monoparametric family of surfaces S. Given by the dimensions of the bath, we

select from this family a suitable surface of its walls and find on it the

distribution of conductivity g.

Thus solution of our problem reduces to finding the minimum of a function

depending on the magnitude of ( O -g

§ 35. Basic Geometric Presentations

We designate

Orr-• Wn ý -(x, Y, Z.X0o Y., Zo". 351

and consider the geometry of the field of this magnitude. In the rectangular

system of coordinates (Fig. 6 4) we have

r (x - XO)± + (y - yo) + (z Zo)Z
SOr dx . ar o#y . ar oz .

=Fn x "y- on +z 0 On '
Wno X. in - -- +joa

but -. COSE, -P.COS =cosy - directional cosines of unit vector

0 Or x-x 0  Or . g-Ya. Or Z -Zan . -- , . --r_ 5.Zo. Placingthese values in
OX-- r dyo0  r r r

expression (35.1) we obtain

(x-x 0) cos a+(Y-yo) X
I Or x CosP+(Z -- Z0)Cosy

r Fn (x -. xo)'+(y - yo)'+ (35.2
+ (z-- ZO)-

Will combine the origin of coordinates with point (x0 , YO) zo) and direct

the axis oz along the axis of the dipole (along vector n ) then

Zo-=yoZ=O, cosa=cosp=O, cosy=--.
Using the axial symmetry of field e we will consider it only in the cross section
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Fig. 64. Fig. 65.

with plane y = 0. In this plane

6(X, Z) i x,z)=x + z2

Hence the equation of the line of constant values of E will be

This is the equation of a circle with center at point

and radius

Consequently, in space of the surfaces of equal values of E will be spheres

encompassing one other and touching at point (xo, yo, zo) (Fig. 65). Let us

assume that now the aipole is located at point (x 0 , Yo, zo) and its axis

(normal no) will form with the axes coordinates the angles a, 0 and •. Equation

of surfaces of equal values of E will be recorded thus:

(x - Xo) cos a + (y - Yo) cos p + (z - Zo) cos y C, (35.4)•! ~(X -- XX + (Y -- Yo) + (z - ze),

or after elementary transformations

(-xox+coa)' + (Y Y.+( .+coY\2 (35-5)

2C 2C C (X)



Hence it is clear that this is the equation of

a sphere with ra as

I
Rx = 2C (35.6)

and coordinates of center

cOa CCose cosyr, Xo- 2C-' Yu - YO-- Z;•zo -.2C

(35.7)

Fig. 66. Let us assume that normal hO (axis of dipole)

will form with the coordinate axes the angles

a, D and •. We extend through vector no a vertical plane and project, segment

AE coinciding with vector n0 onto the axes ox, oy and plane xoy (Fig. 66). We

have AB = AE cos a, AC = AE cos 0,

AD =AE cos (Y V AE sin y,

on the other hand

AB = AD cos = AE sin V cos 0; AC =AD sin 0 = AE sin y sin 0.

From comparison of these segments we obtain

cosa = sin y cos O, cos[ = sin ysinS. (35.8)

Here 0 - angle between plane xoz and vertical plane in which lies vector n0 .

Placing (35.8) in expression (35.2) we obtain

(x - xo) sin y cos 6 + (y - Yo) sin y sin 8 + (z - z0) cos y

X -x--x) + .Y --Yo) + (z -- (Zz (35.9)

If in space we extend a plane it will intersect sphere E = const and the line of

intersection will obviously be a circle. Thus for instance on the Ciane z = 0

the equation of lines of equal values of e will be written:

(x - xo) sin y cos 6 + (y - yo) sin y sin 0 - z, cosy C
(x - Xo)' + (y - Yo)2 + Z2

Hence after elementary conversion

sin ycosO )'(YYO sinysinO I(X 0+ 2C ) Y -- YO + insn2C '

This is the equation of a circle of radius

L 229



(z(

and coordinates of its center

Xo 2C ; Yd- 2C (.5.12)

§ 36. Model with Minimum of Average Value of Absolute Magnitude

of Potential of Distortion

Let us consider now how to set up an electrolytic bath ensuring in an

assigned region D an expedient minimum mean absolute value of potential of the

field reflected from its walls. In other words we will seek the form of the

surface of the walls of the bath S and the distributions of conductivity of holes

g on it ensuring the possible the minimum of integral

3=4a IldV,= I Tý1 ' r- g)a drld,. -•
I D Tn (36.1)

We have inequality

4xj~I4~~ % rn gdS. (36.2)

Consequently

CL I9 & -7 g dS V
''~L7 Frn dV(36.3)

If we will make J, small, then we thereby guarantee the smallness of J. Changing

the order of integration in expression (36.3) we obtain

11 1• tOr gI dV dS. (36.4)

It is possible to decrease integral J. if we decrease as far possible each of

the components

dJ,=trP(f11+i1,!t g!dvJ dS.

Potential 1! depends on the location and magnitude of sources in the bath and we

are not able to affect it. Therefore we will attempt to decrease dJ1 only at

the expense of a decrease of integral

(36.5)
r r on
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which may be viewed as the value of potential at point (x 0 , Y0, z 0 ) from

fictitious charge Q distributed in region D with density

I &~

It is possible either by decreasing to decrease potential J 2 the charge Q

creating it or by increasing the distance r from charge Q to point (x 0 , Y0 z0 )

on the surface of the bath walls. As already was indicated an increase in r

is technically impracticable, it leads to an increase in the dimensions of

the bath. Therefore we will decrease charge Q, decreasing thereby potential J2.

Actually, applying the mean value theorem to integral

J,=Lr,,IdV=cL I On IdV = Q, (36.6)

D

we see that J2 is proportional to the magnitude of integral Q. Here r cp-

distance from point (xO, yo, z 0 ) to one of the points of region D.

Thus the problem of detecting a practicable minimum of integral J has been

reduced to the prcblem of detecting of minimum at every point (x 0 , YO, z 0 1 of the

simpler integral

Q, 1 =Ile--'dV (36.7)

Magnitude of integral Q for a fixed value of r depends on the magnitude of

conductivity g at point (xO, yo, zo) and the direction of the normal nU in it,

i.e., on the magnitude of angles -y and b, Let us try so to order these

magnitudes so as to make Q minimum.

Let region D, in which is necessary to obtain the least distortion of field,

in other words an element of unlimited space presented as a limited volume.

Spheres E = const will intersect region D. Let us show that the integral of Q

attains minimum at such value of g at which sphere E = g divides the vclumc cf

region D into two equal parts Di ana D - Di.

We will call Di that part of volume D in which difference (E - g) is

positive in the remain volume (D - Di) the difference (E - g) is negative. Taking

this into account, the magnitude of integral Q can be defined:

Q- Is -- g I (e-g)dV (e-g)dV. (36.8)

DD-D,
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Wegie El an iz-aotf i-r, t:-eti vu.lumt D ill Which Lihe Uil Ierelict (E - g) is

Dositive will decrease by ,V. volume (D - D) in which the dihference is npgat-ve

will Increase by the same magnitude. Integral Q takes the new value

Q( Q+AQ1 z / (= -g-Ag)dV- f (u-g-- Ag)dV=

tmj(9-g)dV- (I -8- dV 2ýa g)dV-Ag (D1 -AV) +

+Ag(D-D 1 +AV) - Q + Ag(D - 2D) - 25• edV+2gAV+2AgAV.

The increase is expressed by the formula

AQ,=Ag(D-2Dj)+2gAV-2 edV +2AgAV. (36.9)

Volume AV constitutes a layer limited by two spherical surfaces E = g and

E = g + Ag. The mean value of E in volume AN with an accuracy of a higher than

"first order inlinitesimal obviously equals:

Cp 2

Consequ, itlý, for small Ag we may set

21 MV = 2aCAV 25 2gAV + AgAV.

Substituting this value in expression (36.9) we obtain

AQ- =Ag (D - 2D) + AgAV. (36.1j)

Will give g an increase -Ag, then volume DI will increased by AV, volume

(D - Di) will decrease by AV. Integral Q will take a new value

Q, =Q+ AQ?= (e-g+Ag)dV- E (e-g+ Ag)dV=
D • D--D--&V

- (s-g)dV-- S (e-g)dV+2 (e-g)dV+ Ag(D 1+AV)-

-Ag(D--, -AV) = Q + Ag(2D1 -D)---2gAV +

+ 2e 2dV + 2AgAV.

The increa3e AQ2 is written:

AQ& = Ag (2D, - D) - 2gAV + 2 a6 edV + 2AgAV. (36.11)

Mean value of E in volume AV in this case has the form
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A-

and consequently for small Ag

2j edV 2gAV - AgAV.

Substituting this value in expression (36.11) we obtain

AQ, t- Ag(2D, -- D) + AgAv. (36.12)

Under the condition that D = 2Di, in both cases, i.e., with a change in

conductivity g by ±Ag we obtain the same positive increase of integral Q

AQ = AgAV.

Consequently integral Q attains a minimum with that value of g which E takes

on a sphere dividing the volume of region D into two equal parts.

Knowing the eqiaition of the surface limiting the volume of element D, always

it is possible to express the magnitude of volume DI = D/2 in terms of radius

Fg and coordinates Xg, y , z of the center of sphere E = g tangent to the

surface of bath walls S at the point (xo, YO' zo)" Considering in formulas

(35.6) and (35.7) C = g, we obtain an expression for the radius and coordinates

of the center of the sphere

(36.1))
sin y cosO sin y sin 8 cos Y

2g Yg=Yo 2g , 0 2g

As can be seen from these expressions the radius of the sphere and the

coordinates of its center are functions of conductivity g. Expressing the volume

of region Di = D/2 in these terms, we obtain an equation relative to g. Let us

assume that it has the form:
Dl

D= = 0(g). (36.i4)

Solving this with respect to g we find the magnitude of conductivity at which

Q reaches a minimum.

Precisely the same conclusions can be drawn in the case when element D

constitutes a section of a plane of limited area. Spheres E = const interesect

region D along circles. Integral Q attains a minimum at such a value of g at
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Fig. 67.

which circl' E = g divides the area of region D into two eaual parts D1 and

D - D1. The proof of this is precisely tne same as in the prtceaing case. On

Fig. 67 is shown a geometric interpretation of tne essence of the Lroof for the

case when region D constitutes a segment of a straignt line, The natcnarei cart

is the volume g, the shaded part the increase of g witi a change of :Lg.

Knowing the equation of the contour bounding the area of elemen. D it is

always possible to express the area D= D/2 in terms througn cý tne recis an::

coordinates of the center of circle = g. Substituting C = g, in formulas

(35.I1) and (35.12) we obtain an expression for the radius and coordinates of

the center of this circle:

1// l ( cosy \' sinycosO

R, 4g2\ 29 X= 0  2g

sinysin8 (36.15)

Expressing the area of region D1 = D/2 in these terms we obtain an equation with

respect to g

DD, = 2

If the form of the surface of the bath walls is given then the fixed direction

of normal no at each point (xO, yo, zo) and integral Q will thereby be a function

of conductivity g only. ln this case determination of g from eqaation (36.14)

will be a solution to the problem posed. If, moreover, the problem of detecting

of the form of the bath wall for which distortion of the field in element D will
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be minimum Js imposed, then it is necessary to seek the airection of normal n

(dipole asix) at every point (xO, yo, z.) at which integral Q attains a minimum.

This can be done as follows.

On sphere e = g the difference (e - g) changes sign, therefore for Q we may

write

Q=-ls9-gjdV=,(99-g)dV- S (a-g)dV=2jedV-

-jsdV-g(2Dj-D)=2 1. edV - jdV. (36.16)

Integral i 8V is a function of parameters, angles -y and b, integral 1,dV

moreover is a function of the boundary of region Di a section of sphere e = g

(or arc c = g when element D is a part of the plane) which in turn is a function

of conductivity g. Considering g as a function of the parameters -, and . found

earlier (36.14), we can establish the equation for determination of values of -,

and & at which Q reaches a minimum

aQ = 2 dV-- edV=2 d f dV ..

dQ (36 .17)

_•ut

d e dV- fedV SedV
-- Wed= ira D,+&V D, imaV- g (36.18)

AV av" AV

From equation (36.14)

dV d0
ii= W * (36.19)

Substituting these values 4n system (36.17) and replacing E by expression

(35.9), we obtain

-gdLg-+cosycose X dV --1-+cosysin. Y dV

D

n -+sip.ycos YOdV=0.

dg(M Jj 2t
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Such a system will take place when eiement D is a part of plane z = 0.

Solving system (50.20) relatively to , and t we find the direction of' normal

n at every point (xO, yo, zo) at which Q is minimum. Thus determining the-0

field of vectors n0 in space it is easy to compose differential equations of a

family of surfaces orthogonal to them. As is known from differential geometry

this system is:

____Cosaa; = =--tgYycos,
(36.21i)

Cos =--tg y sint t

Integrating this system we obtain the equation of a one-parameter family of

surfaces

-/(XO YO, C). (36.22)

Parameter C will be defined if at least one point (x 0 , YO Zo) is given through

whic- it is desirable to conduct surface S of the bath walls.

Thu". the problem and in this case can be completely solved.

§ 37. Model with Zero Meaning Value of Potential

of Distortion

For modeling of a field of stray currents in earth during ca.cuatic.n of

electroprotection of underground installations from corrosion it is desirable

to have a model of an lement of unlimited space D in the form of a section of

free surface of the conducting composition of the bath. Here it is inoortant in

recion D to ensure first a zero mean value of potential of distortion ½2 in

every point of region D. As will be evident below, these two requirements almost

never contradict each other and can be satisfied.

The first requirement determines the magnitude of conductivity g in every

po,'nt (x0 , y., zo)" it is formulated thus:

I = 4A ft •dS= "~ dS 0.O
V2 r r ( i S ,dS =O. (577.1)

Change the order of !itegration we obta.'n

"7 (1 r- g) dS' dS = 0.

This equality will be satisfied if at every point 'xO, y0 O Zo) the surface of the
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bath walls S is ensured

r r in-

Hence we directly obtain

I lar dS, rdS,
jr

e_(Xo ,. YO' (37.!)
r

The second requirement determines the forr• of the surface of 14he bath ,h is S.

From expression (34.5) one mLy see that to d3crease aapintud:_. ýc2I without

increasing the dimensions of the bath is possible at the expense of a decrease

of magnitude IE - gj. Applying mean v•!u? theorem to the integral standing

in the numerator of the expression for conductivity 037.3), we obtain

e (XI, yL, zj) dStg (XT. YO. Z.) -( , P-T (X, Y" Z1)

where point (xj, Y1 , Zi) belongs to the xegion and consequently

a. g < e.,,9 (37.4)

ihere eZH and E are nminimum and maximum values of E in region D resnectively.

In order to minimize distribution of magnitude 1E - gi in region D in the

Cl.abyshev sense it Is sufficie-t: 1) to find such distribution E in D fcr which

difference %aC- " will ce :Lrnimum- 2) to take the magn'tude of conductivity

g equal to (eM&yc + E ):2. in c.tvr case the magnitude of g is already determined

by r37.3) and we cannot obtain a minimum of the modulus of difference JE - g,

although, as can bp seen from inequality (37.4), conductivity g is close tc

8eUC. + y3,q

2
Finding the distribution of - in D for which difference E E Is

minimum, we will approach a mliimum mcgnitt~ie e - g! and, consequently, ;21.

The problem consists of finding that d.recticn of ncrmaa n at each ?oint of the

surface of the bath walls (xO, yO' zo; for which difference E - A'In

region D will be minimum.
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In the considered case region D is a part to the plane and constitutes a

section of the free surface of the bath. Considering in formula (35.11) Rc = 0

we find

I - cosy 
' 7 5

Suc = •o (37.5)

Substituting this value in formulas (35.12) we find the coordinates of the point

of region D at which E = e

sin y cos . sin V sin 0 (37.6)
x=xo+z 1 -cosy I -,,=y zo cosy

The surface of the bath walls S rests on the free surface cf conducting composition

S from below. Therefore z0 - 0, 1 > -7 and from formulas (37.6) it may be

concluded that if Izol is less than half the diameter of free surface S1 then

point (xm, Mym will be internal for S1.

z

Z-9

@ • •0 • •.Yo.zo)

on \

Fig. 68.

Let us assume that element D constitutes a circle of radius R (Fig. 68).

Let us combine the coordinate origin with the center of the circle and direct

axis oz normz.l to its plane. From the geometry of field e one may see that it is
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always possible Lo select such a direction of the normal n at point (x 0 , YO, z0 )

at which the trace of one of the spheres e = C on plane z = 0 will coincide with

the circumference of circle R. Here the point at which E takes a maximum value

will be inside circle R and c = C on circle R obviously will be minimum. As

follows from formula (35.6), it equals

(37.7)

Normal n obviously will lie in a vertical plane passing through the axis oz

i.e., angle e=arctgL), and coincide with the airection of the radius of sphere

E = C. The center of the sphere is an axis oz at point z . Let us designate the

distance from axis oz tt, irbitrary point (Y.. y) by Q (Q• = x2 + y) and write the

equation of the circle formed by the sphere E = C in the vertical plane passing

through axis oz and normal n

e -+ (z - Z,)2 = R•. (37.8)

Substituting in this equation the coordinates of points (-:R, 0) and (pO, zo) through

which should pass the circle we find

,R = R+,z-!. Q9 + 22'- R2
Q .-I?' (37.9)

We write the equation of the straight line coinciding with direction of normal

-0
n at point (pO, zo) and radius of sphere E = C

. _ Q+ Z/ e z. (37.10)

Consequently the tangent of the angle between normal n and axis oz has the form
I ___Qo 

2 zoe,

gy: -k zo--z. R R+ zo--Q02" (37.11)

0We now show that in this case the direction of normal n , i.e., when
2zoN

6=arctg y=, yj = arctg z2-

the difference (Emamc - EXMP) in a circle of radius R will be minimum. We

proceed from the fact that the point at wnich E = £EMPC lies inside circle R, the

point at which E = E - on the circumference of the circle. Converting to

cylindrical coordinates in formula (35.9) and substituting

x=Rcos V, y=Rsin., xo=QOCOSVo, yo=Q0 3sinV,.
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for the value of E on circle R we obtain

zo cOS , - {R cos ('I -0 ) - Q0 cos (*0 - 8)1 sin y
R' + _- 2RQo COS OP(• IO) + -0 (37.12)

Since emaxc is independent of b, then setting the derivative of E with respect to

ecual to zero we find the values of u for which the difference E -

has the extremum

ON (R sln (V - 81) -- •Q sin( -)I sin y 0.=W ýRt + Q02-- 2R•o COS (1 -- V) + z,2D=o

For any pO this equality holds only if

sin (* - 00 = sin ('• - 81) = 0,

therefore either

*o-81= '_6=0O, 81=*o=1, (37.13)

or
o--% =,1P-8, + T=o, e,=l0 = * +z.

From these relationships it follows that the vertical plane passing through

normal n should pass also through the axis oz, i.e.,

$I = *c = aittg Y.
XO

Substituting vF.lues of , and * in expression (37.12), we obtain

Z0cosy-(R-Qj)sin y"R2A + e02--Me, + zQ2
(37.14)

zocos y + (R + Qo) sin y
e2 R2+ Q02+2RQO -- z.2

Here E. and e2 are, respectively, the minimum and maximuim values of E on the

circle R.

Let us demonstrate that the difference E - E will occur at a value

The maximum value of E was found by us to be
1- cos-y

as aE VH we take the smaller of expressions (37.14) which are equal for = -•

I81 (YI) = 82 (Y•)= ýRu-

Giving -y an increase 1A6, we obtain an increment of difference '(VaE c - ,

If it is positive for Aty of eithEr sign then the difference (Ea - E. is

240
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minimum. With an increase of -y by +&)E, and E2 take on increases of different

sign

o -zosiny,-(R- Q.)cosy, Av=- (R - Q) 2 + Z2

(R - Qo) (z - zo) - Zo A> 0o ,
"R, I(R- Q0 " + z1 0

LesI Ay= zosin y, +(R+ 
-')Cosy1 Ay

S---- - -Y, (R -L o) ± + 202

-(R + Qo) (z --zo) -- eo A<.
R,, I(R + Qo) + Z021

Consequently, for +A• it is necessary to consider the increment of difference

('a~c - e1 1i), for -Ay, an increment of difference (E .axc - Ei). For a positive

increase of ) we obtain

t., (y, + AV) - e2(y, + Ay) -M= (VI) - C2(Y,) +

+ kdY-)t = E. (Iy) -e 2 (Y1 )± .2
S(R -+ )- (z - z°) ±+ z~ Qo Ay = --RAy

+.= RR+QX + e, I- •) (.) ± 2z•R

Difference (Emamc - E. ) undergoes a positive increase

A RAy
(- - . 2z- R

With a negative increase in I we obtain

, (Y, - AY) - el (y, - Ay) = ,M, (Y,) - e, (v,) -

(t-.,• at,\ sin 6,
d ,..AY = 8. 1 -,) (Y.) _

(R -ed(z-z.)- zd o - 0 _RAy

R,[(R- Qd' + zJj iY - - -tl) (Y,) + _z- -

Difference (EaKc - s•) in this case also takes on a positive increase

.- BURY) =_ _RAy

Th'-3 oroves that for ] = difference (EmaKc - E•zH) has a minimum.

Let us go now to the construction of the surface of the bath walls S.

Considering that

241



_g dzo (37.15)
tgy = dg'

we write the differential equation of the trace of the sought surface in the

vertical plane (poz)

dz0  _____odz - ,_oo (37.16)

The general integral of the differential equation will be

to R = C. (37.17)

Zo

whence

2+ ( --ý)2- -R .+ . (37.18)

This is the equation of a circle with center on the oz axis at the point z, = C/2

and radius R-= J R + Constant C will be determined by the maximum

depth of the bath H. Assuming H = ,R and substituting coordinates of the deepest

point (0, -7,R) into equation (37.18) we find

C= -- Va R, (37.19)
V

and consequently the equation of the trace of the surface of the bath walls will

be:

( v R=R v 2v (37.20)

Considering the axial 3ymmetry of surface S we conclude that it will be spherical

(Fig. 68) with its center on axis oz at the point

2R (37.21)

2v
and with radius

I 1+v'
"~ "2v "(37.22)

If region D differs from a circle then the form of the surface of the bath

walls S also is expedient to select spherical, resting on a circumference the

diameter of which is equal to the diameter of region D. In this case the values

of the difference (se ,c - EMMH) for different points of spherical surface S will

be only less or equal to values a, points of thE surface of the bath walls resting
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on the contour of region D. The magnitude of conductivity g however must

determined from equation (37.3) by integrating over region D.

It is important to note that property of baths of designed and built by this

method do not depend on the properties of the medium filling the bath. In

particular they will be maintained even during modeling of the field in nonuniform

and nonlinear media. In fact, if within the volume of the bath there were some

nonuniform or nonlinear inclusions then when producing a field in the bath these

inclusions will be equivalent to additional sources distributed over their

boundaries and volume. Properties of the bath do not depend on distribution of

field sourcez in it and consequently are maintained during modeling of the field

in nonuntform and nonlinear media.

§ 38. On Accuracy of Modeling

Let us find the connection between the normal component of intensity En (P)

and potential f(P) on a sphere of radius R in a uniform unbounded medium where

we will consider tne field produced by a cirnt source

q located at point M inside the sphere. Potential

f(P) has the form (Fig. 69)

0 , f (P) q q 10
41tyrmp 4yV/'* + ' - 2R M8 O' 6 = (r0 ", roN).

.(58. 1)

The normal component of intensity

Fig. 69. E(P)=- q R-Qcos

R 4nyVfRI + Q' - 2RQ cos" R'+ Q2 -_ 2RQ cosO

=f(P)e(p). (3L.2)

here

8(p) -QCosO NP cos(r,n) (38.3)

,R2+Q2-- 2Re cos 6 2NP rNp

E(P) - function playing role of proportionality factor between f(P) and 6f/6n

at every point of the sphere. In the model of an element of unlimited soace )

in form of a sphere of radius R function E we replace with a ýonstant -

conductivity of holes g connecting the internal volume of he model witn the

external metallic housing. Such a sulstitution will decrease the influence of the
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boundar . morc the sm.all.er the value of differei-t. (t ) in volume D.

The least and greatest values of E respectively equal
__ I

$MEN 2R --. Mac =€ (37.7)

:,et us find the mean value of E the entire over volume D. Surface e = 0= const

is a sphere of radius

R, • (35.6)

The volume of the sphere of bounded by this surface is

(38.4)

The derivatlvp of this volume with respect to E 0 is

dV a - = :t d.J (38.5)

The mean value of e within the volume of a sphere of R can be written:

I~ ~ eldv 3 de0 3

3c (38.6)
SP 2 e-"

It is also easy to find the mean square value within the volume of the

sphere

e2 3 2• 3SP a~ deo=~

2R

-- .(38.7)

As can be seen, E differs little from c , consequently function e

differs little from a constant. Ensuring in the model a conductivity of the

boundary g = cut we thereby reduce the distortion introduced by the boundary in

a definite sense to a minimum.

The exact calculation of error introduced by the boundary of model in the

investigated field in general constitutes a very complicated problem. However

for the most important case when element D constitutes a sphere and the boundary
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Fig. 70.

of the model its surface, we can be obtained an expression for the ootential

of distorting field for any distribution of sources in such a model in the form

of a rapidly conveying series.

Let us consider a solution of the following problem: in a mcdel whose

boundary is a sphere of radius R with constant conductivity g of unit surface is

given the distribution of volumetric dens.ty of charges o(xO, YO, Z0 ). Is

required to find potential ( at any point M(x, y, z) of the model (Fig. 70).

By the formula of Green, potential at point of the M model has the form

9'd A(qP rco-r n) ! + 1 1 gdS,,. (38.8)
-4wty rt 4. Jt rpm, rpm

SR

Converting point M to point Q lying on sphere SR, within the limit we obtain, d 9T ] ,~ ( Q
V SI P

or

(Q I' "dV 1 £ (P) cos (r, n) _1 d
( 2 ) Y j r, 2n f -FQ I r K ,. (38.9)

On sphere SR of radius R, the magnitude of cos(r, n)/rpQ is cor.t.ant and equal to

cos (r, n) 1
r/ 2R

:. 4-45
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Due to symmetry, conductivity g is constant. Let us take it equal to

(I<v<2). (38.10)

Consequent 'y

Cos(,,nR) I--V
PO - 2R- -- a - , VIo < 1) (38.6)

is also constant and the expression for potential q takes the following fora,:

Here

I Q ify UR' rP (38.12)

We will cnnsider expression (38.11) as a Fredholm integral equation of' second

kind with respect to potentJal T. Let us present a solution of equation (38.11)

in the forn of a Neumann series

(Q = 2f(Q) + 2IaKT + a-'V f +...I. (38.13)

Potential of distortion 9 will be recorded &lso in the form of series

9t(Q) •(Q)-- f = f (Q) + 2 lXKf + aAP +.... (38.14)

Let us show that this series converges rapidly. For this we will estimate

the norm of operator K. We have

si ydy (.5)
"'IMv 'R - -4nRmax I •.

sin f SR

Conpeauently

IKtIP =n'MXtI Mai ~ =4XRrnaxlyl,(381
Sft s it r., SR

whence

Thus f K V 11 .~= 4A 1 (38.17)

* --

S~Thus

• lA!Kll - I u.1. (38.18%



If one were to take g = 3/4R, then a = -• and consequently series (38.14)

converges rapidly.

The expression for potential T2 (M) in any internal point M gives Poisson

integral

9|(OM
VI S y%(rJdSQ(@-O1=r, 4,rod. (38.19)

S(R - Mr,o cG + ,olN)

Substituting here instead of T2 (Q) its expression (38.14) and limiting

ourselves to two or three members of the series we obtair an expression fcr

distortion potential at any interraJ point of the model

TS A = I I(Q)+u- 6Kf +2a'M'+." [R$-r6JdS. (38.20)

'2IRr0 , cos 0,+ rju)

Definition of T2 in the model is equivalent to a solution of the following

boundary value problem for a harmonic function.

Presenting the resultant potential 9 in the form of s=u f and q2 we obtain

the boundary condition for T2

Here F is the well knowr function:

F= ~j+~f (]58.22)

The boundary value problem can be forn":lated thus: find the harmonic function

92 inside sphere if the following relationship between values of function T2

and its normal derivative on the sphere are Liven:

J-1 -= F. (38.23)

For appraisal of influence of the boundary of the model on the accuracy of

modeling the field in the following experiment *.as performed. An electrolytic

bath was prepared in the form of rectangular. Conductivity g in the walls of the

bath was replaced by conductivity of noles drilled normal to the walls at



|f

aistancei uo t cm rrom one another over the entire surface of the wails.

Internal dimensions cf the bath are 1400 x 700 x 250 mm.

Oa the su-i'ace of the electrolyte of the bath was mounted a spherical

eleer'ode of small radius having a point charge. The second electrode was connected

to tht external kousirn of the bath. A voltmeter was used to obtain a field pattern

of current in the beth on the curface on the electrolyte and this was compared

w th alculatizns. Here it proved that noticeable distortions of the field

patterr were obrerve' only near the bath walls at distances of less than 5 cm.

These distortions are appare-ntly Explained by the fact that continuous

distribution of conductivity of boundaries is replaced by a discrete distribution

of holes.

§ 3c. Model of an Element of Unbounded Space Having
the Form of a Rectangle

Let us consider how to find the conductivity g of the walls of the model of

-n element of unbounled space having the form of a rectangle D with sides m and 2m

if tVie surfacC of the walls constitutes the surface of a rectangular parallelipiped

whose upp-.r ma.6in is a rectangle. The depth of the conducting composition* of the

modcl is R = L•m (k 1 0.2). Conductivity g will be sought from the c,inditions

of iinimuia Qf integral Q. As we clarified in § 36 integral Q attains a minimum

at sucli value of g for which the circumference e = g divides the area of region D

intc two equal parts D. and D - D1. Jsing formulas (36.15) we derive equation

(36.141).

Let us take as the origin of coordinates the center of rectangle D and direct

the axis oz normally to its plane. Axes ox and oy we direct parallel to sides of

length 2m and m. Equation (36.14) has different forms for different edges of

the surface and ever. within limits of one edge its form changes depending upon

the position of point (xO, YO" Zo) on it. Due to symmetry of region D relative to

axes ox and oy it is sufficient to derive equation (36.14) for the two halves of

the lateral faces and a quarter of the lower.

Derivation of equation (36.14) for lateral face of length 2m (Fig. 71).

On this face

T=-f . "-, 0==--1. (39,1)

Placing these values in formulas (36.15) we obtain
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1 1 .

Fig. 71.

5-X8 , V ; -: (39.2)I

As can be seen frcm Fig. 71 circumference e = g can occupy •h'ee differert positions

with respect to rectangle D. Each of these positione eorresponds to a definite

relationship between its radius and coordinates of the center and a definite

form of equation (36.14). Using the d-signaticns of angl•c in Fig. 71 WC- express

area D, for each position of circumrerence E : g:

I) & <,.-z.. (;)9.3)

Dm zD,-"O (r. ',+ (.+ • • ' I
2)2

2 m-,> < /, < .m + xP, + FS +
D, M2 R; .x+, -, + R I - ,22•

x+Ot+ (m - x) Rxt--i~ (,n 14)

/+ 4-2'9.5I+
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.roi. Fig. "1 Ose that,

+~ 
-g

% -Armcs & ,ArCcoS RS
Substituting values for P. and 0 2 and replacing Rg, Pr with their exp.-ecs~ok-s

(39.2) we obtain three equations for the determination of co-nductivity g:

2, _(_,_ ,I_ _.,

(39.6)

I

2) -- ar-cos _/ arccos

,... .... •/1/,2 " (39.8

(39.7)

I

-s- s =-,9arccos )
2 x a '

Let )s find the boundaries of scitions foz- wbtch ore should usc one or the other

formula: Setting Rg -m O an placi.na thIs val~.e in formula (96 we find

xo= x01, starting from which one shou,1 use foanmula ('39,7). From the =odjtion

z H 0.2 m, disregarding member z2 'e obtatn

0I
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The root of equatLoL, '39.9) will be x01 0.,. i. cetzing

we obtain

-J•

Subs;.Ituting this value tn formula (39.7) and Jtsre-ardtng the term z,: we find

x 0 X01 starting from which one should "se r:rruia • %o8)

"' --•" •' -AM) (M, -- ds,)- A, -••) X

1. •

- - L .. a..L... o

The root of this equation will be x0 2  0.49 su, coni;quently for detcimina !zr. of

conductivity g for 0 x0 1 0.4 m one should use equz 'ton (39.6), for

0.4 m S x 0 ; C.U9 r - equation (39.7) and for C.49 z; xO - m - equation (39.8).
Der:*vatiorn of equation (b.36.1) for a 1,-•eral face 2 Length m (Fig. 72).

On this face

A I O,-

2 2g

As cen be seen from Pig. 72 'i•rzumferenc. E = g can occupy two differee.t positiors

v-ith respect to rectarigie D. Each of these positions corresponds to a definite

form of equitton (36.14). 4e express area for each position of cIrcunference

D, 1)( 4-M

2 =-:

ýZr I
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Fig. 72.

2) eR,>4o+-,

+ (,.+ M) i ,,-(,. +n (39.12)

From Fig. 72 it is evident that

'I•=•= t + l, a' • -ei 2
a3Icos * arceos R

Substituting values for *, and f,2' replacing R and y 9 with their expressions

(39.10), we obtain twD equations for the determination of conductivity g

1) X- arccos... "-,

"(39.13)

49'O

.2-2



x) £-ar~cos -a-o

-.1 Mf YO

(39.14)

Let us find boundaries of sections for which one should use one or another

for.ala. Setting Rg = m + yo and substituting value in formula (39.13) we find

the magnitude of y0 = y0 2 ' starting with which one should use formula (39.-4).

Disregarding form z2 we obtain
0

29 2

,,,_ ,,,' - -_ _,..

S- Arccos m-2

The root of this equation will be y = 0.095 m, consequently for determination of

conductivity g for 0 1 yo * 0.095 m one should use equation (39.14), for

,.-95 m ý 0.5 m - equation (39.13).

c) Derivation of equation (36.14) for the lower face of the model surface.

On this face

T -- z, ze - - i = : • R S - -Be . (3 9 .25 )

As can be seen from Fig. 73 circumference e = g can occupy seven different

positions relative rectangle D. Each of these positions corresponds to a defined

form of equation (36.14). The area of application of each of the equations may

be determined from a system of inequalities characterizing the position of

circumference E = g in rectangle D. An approximate form of these regions is shown

in Fig. 74. The digit on each region indicates the number of the equation.

Below are presented inequalities characterizing the position of circumference
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e - g and e4uations for each region of the fourth part of the lower face of the

model

oous asrctg 1
+ H (39.16)



2)2

_ -arctg vg (

J/~3I -91

-arctg v 7- / j +( -2 y) x

+ Yo + 3-7

'/x - H it-(m- +)

+) m-xoRej/4-IP-m. R< m m- xe)-.)
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P& frf O e<( o

Im\

-- amct

-2arctg m+.

+2I1(712# +

+-f~m-xm

-~ g~2

(H- H-) I j/- ac- s-x. I1
9 L m



+(- + HS ¢ "-(y +,.o"-F
+(,_ i/'I .- • _,_(M u,,

1/91
7) + '

2-rt gm

-Srcig
1+9+-H2- YO+ +

Calculation is carried out as follows: coordinates of point xo, yo are and

according to Fig. 74 determine the number of the equation which one shculd use;

substitute in this equation the coordinates xO, yo and find the value of g which

satisfies it.
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Let us consider two models of element of unlimited space of simple form. Let

us ssue tatthefirt lemnt andistit.utesaphr of c radiustvt r. Lnet frs

tcondirutiaone of element of ntegral in Pro

an dexpedinds only n ofistane frome pofn modulus

tof pthenterl of ditheshrti. 'Pet us plaer thed

olegt osfin coeordiae at the corter of spdere D

and direction th divit n oft•fth

75 segments conlonectin tncfo point (x, . z, with t ze

o eleenter ofoh sphereD er usplae L th es

•:. ~ ~ ~ ~ ~ ~ ~ oii ofasm http is lmn coosiuesashre rdinate athceer. ofspee us

::• ~and eediret axins oz Intedre ctionau of thelu

•" " ofpoenter l of speeD.Hertea 4 0. Lethe uors

direct axis -3x in suen a manner tnat it passes through the projection of normal n

onto plane xoy, i.e., we set angle e equal to zero (Fig. 75). As follows from

3b, the minimum of Integral Q with respect to parameter g will occur under the

condition that sphere e - g divides the volume of sphere D Into two e4ual parts

Di. and D-D 1. Let us compose equation (3b.14), using this condition. In general

141 :bg and region Di constitutes two spherical segments having a common base

(Fig. 75). Let us designate h. and hr the heights of the segments, Q the distance

between centers of sphere D and sphere e g of radius R Iere Let us0express

the volume of region Du in terms of radii r and I and distance d. We have
g

hence

The volumes of the segments are
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| +
V& = j "&. K-AA) "& (R4-t +d4-3Rr/ + 3kjI4 + i

+ W,•,-•-Ar 9JV + ,6RP + 6,r,,); (io.i)

*x•V. - xl(3,- --k) (0. Re +,. -,.,•,s + &MV +.,

(40.2)
+ 3Rg,- 3•,-- W,,,- * + ,i,%P + 6r,•d . (o

The volume of region Dj

V-s.+ V -[8  +7+-•, + I(+'. , ,1- (•o.,

Expressing distance d in trzms of coox'dinates of Zhe center of the sphere c g and its

radius

1.-". S-,=- V -z*-R,.C,.

d - z- -+x,,t J.-Rso= y+A

and equating the volume of region D, to half the volume of sphere D, we obtain

WI=-x 4' T: + "R*' + I'+ - R3+ ] (40.4)

Substituting for d and R. we obtain

-o(.-r Jr +gM)(,.+,") +

V iv

+ I ;.- , +-- ( -,- o. o.3

Let us show what the minimum of integral Q with respect to y will be for TYSL

For this it is sufficient to show that following are fulfilled conditions:

L o. L>o.o

p-259 ,,



Assuming -V X in Equation (40.5) and considering that here d--(z.+RJ.) we

obtain

e)'.. + 2'()

+ +

jy 2g(140.7)

or after transformations

- 2"0--2V(3-- + 3 + 6v1- 0. (4o.8)

Here is designated a=- and ;=-vr(v )>). The sought value of a at whichgr
sphere e = g divid,3 sphere D Lnto two equal parts falls in the interval

I ~I
2I 2v+I-•.jF (40.9)

Indeed, composing for equation (40.8) the series of Sturm functions

(a)- -- 2W -- NO3--v)a + 3 + Wv,

-r (a) - w - 3vap- 3v + vs.

(a) =V - -2(v0 -- 3)vU-- 4 -- 7vt + v-, (40.10o)

12(a) = v(÷-- 5)Ma-v + 5v* + 3.
"- ,(es: -'-6v' +3.

and substituting in it instead of a the values - and a-=v--- - 1•X9

we are persuaded that in the interval 4 V+!+ the number of' sign

changes in the series of Sturln functions ¶s changed in units

IQ- ( + ' 2v(v + y -2v(3 -Y)(+ )+3+61v'-

T r (aim 2(+v+-)-3Yv(v+') 3v+VIU.L4V- 1---'•,
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+1 V+I
-- 4--7v$+ ---- !--3--<0.

&fto ) - V to--s) ,+ I--•,+$,,+3-!t -+1.>o0

.f,(c,)m-0-6vI+a<0. if v<,< .- m&(*J>0.

if V> Z 34

(there are three changes of sign if v <2,34. or two if v >'2.3,);

v+, 1+ ,.)-2, -,•(, +•,+r÷ 1 r +3+,,-,-=-

13 70 17 37 2 + >0-- 4-2 + 3--..-27 -+ T4 --27 2662, R" Ti-4>°.

•,'"• =2 ("+ ' + 1 *-) -3v (V+ •,+ -- )

3 23 . 39 1

-3v+vs--3v+ 3+ -• - + --- !9- + + I <0,

3 7 1
Is ur ----`(V +-L L -2(- 3) + +- -V' + 51 +3,

S_ 1 3

h:(,Q v-0-6-0+3<0. it v<2.34...fx(a)>0.

if v > 2.34

(there are two chang•s of sign if v < 2.34, or one if v > 2,34).

Consequently, in interval I + I, V~i I- I there is one root of2vl 2 I Ivi

equation (40.8),

Sitting in Equations (36.20) e = o, y = o, yo = o, x0 = 0, we find

Q 2gL-o-!L +Cosy -dv-siny -7 du. (40.11)
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Ccnsidering that due to symmetry

.du (40.12)

D

for y x we obtain

--2g!!? "A , (40.13)

But

=- =- and . (40.14)

since

4g -6 j .i+rs !siny+

+ sin y0.

SConsequently at y,, -, 0, i.e., integral Q attains an extremum,.

Let us write the second derivative of Q with respect to y

2!ý + 2gL' (40o.15)

Setting y x. we obtain

o• I - (o40.16)

But

107 
L x f+ T- (40. 17)o?-VI ,. 7, -., , r



and

The value of derivative W equals

42 (OS.!LCOS Y+igco5Y

_ L& o -M + -co,-

£ g~2gz.+1)

g COSY +lCi9

Pu:tting here the value for a, we find

Considering that j-j---•du>0 we obtain
2v >0. (40.21)+ (2 1 -a

ro>o

Consequently, at y=z i integral Q attains a minimum. Thus the normal F to border

of model S at point (0.0, 4) is directed along the radius of sphere D. Inasmuch as

point (x.• y, zj was taken arbitrarily, surface S should have the form of a sphere

concentrically enclosing sphere D. Conductivity g of sphere S is constant and equal

to a smaller positive root of equation (40.8). its value can be estimated from

inequality (40.9)

V +/+i_<V. -(i+.22)
"+v < VT<V

If-L
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Fig. 76.

The radius of the sphere S-R- ze[ vr. Placing this value in (40.22), we find

I > 9> 1 (1-4,0.23)

Let us consider model of element D constituting a cube with side 2 m. In this

case the problem of determination of the form of the border of moOEl S from

conditions of minimum of integral Q with respect to parameters -y cnd e is

extraordinarily complicated. Therefore, we will assign the fcrm of border S

selecting it in the form of the surface of a cube with faces removed from faces

of cube D by a distance h. We will seek the distribution of conduc-tivity g on

surface S from the conditions of minimum of integral Q only with respect to

parameter g. Each face of surface S is symmetric with respect to cube D and in

turn has four axes of symmetry. It is therefore sufficient to calculate conductivity

for any face on one eighths of its part inconcluded between two neighboring axes cf

symmetry (Fig. 76).

Let us combine the origin of coordinates with the center of the cube and

direct the axes of coordinates parallel to its edges. Inasmuch as the form of

border of model S was selected by us, then thereby are determined the angles

between the normal to S at each point (xo, yo. z)and the coordinates axes. Therefore,

cc.nductivity g will be function only of coordinates (xo, yo. z0). As follows from

ý 36, the minimum of integral Q with respect to parameter g will occur under the

condition that the sphere on which e = g divides volume of cube D into two equal

parts. Using this condition it is possible to compose equation (36.14) for
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determination of g at each point of the face of surface S. However in this case

form of equation (36.14) becom..s different for different sections of the surfaces

of the face. For definitiveness we will examine the lower bound of surface S.

Spheres c = g touch on it in points (Zxc go, z.). radii of the spheresI I
Thus, calculation cf conductivity g at point (xo, yo, Zo) leads to determination of

the radius of a sphere tangent to the face of surface S in this point and evenly

dividing the volume of the cube D.

Center of sphere c = g of minimum radius obviously will lie on axis oz.

Let u. find the radius of this sphere. Let us assume that the sphere intersects

only o:ie lower bound of cube D. Volume Di, cut by it in cube D will constitute the

volume of a sphere without segment by height h. Equating it to half the volume

of the cube we obtain

V. , V*V 'U-R - ht(3Rs,- h) = 4m,. (40.24)

Let us take clearance h between cube faces D and bound of model S such:

Equation (40.24) will take the form

(R3 3 )mI . (40.25)

Solving this equation we find that R,-I,038 m>M. i.e., sphere q = • necessarily

intersects the lateral faces of cube D also. Consequently, minimum radius

Rg>1.038m and sphere E = g will intersect, besides lower, also at least two

adjacent lateral faces of cube D. In general border of region DI will consist of

sections of faces of cube D and part of sphere s = g therefore, volume D., equal

to half the volume of the cube D, can be presented in the form of algebraic sum

of spherical volumes bou"nided by sphere c = g, spherical segments and parts of

spherical segments cut from the sphere by two or three mutually perpendicular

planes. In Fig. 77 are represented diverse variants of intersection of sphere

Aw %
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Fig. 77 (V).

E = g with cube D. For every varianc is determined the volume of region D1 -

Equating this volume to half the volume of cube D, we can find the radius of sphere

E = g. Let us consider this using variant ii - r (Fig. 77) as an example.

Planes of cube faces D cut from sphere of radius Rg three segments. The plane

of the lower face is a segment of height M, the plane of the two adjacent lateral
2'

faces are segments of height Rg-m+x0 and R),-m+y 0 . Volumes of the segments we
designate Vh,, V,. and V6, respectively. All three segments intersect. Volumes of

common parts of two adjacent segments J1,. J72 and /3 we designate Vat, VY2 and V.ý3
(in Fig. 77 they are noted by figures 1, 2 and 3). One such part of the segment

is shown in Fig. 78. In turn all three parts of segments Ji7, .72 and J73 intersect

form a common part uesignated K1 . In Fig. 79 it is shown separately. The volume

of part K., we designate Va,. Thus the volume of region D. in this case can be

represented in the form of algebraic sum

V D V.-VU-V, + M+ (06+ )

Equati§g to its half the volume of cube 4 m3 , we obtain an equation for determining
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Fig. 78. Fig. 79.

the radius of the sphere Rg.* Analogously are composed equations for all the
remaining variants. Each of volumes Vc. "• and Vý can be expressed in terms of

the radius Rg9 of the sphere, the length of a cube edge 2 m and coordinates of" the

point of contact of the sphere with a face of surface S (x,, y.,z

V,,= IJ,•e,--a). (40.27)

3 a

For calculation ea of o different segments in formula (40.27) one should
substitute different values of height a in accordance with Table 17.

Table 17.

V Ja-Rg-m+z" o VdC a=RS--m-y

-M 4avhý a= f2Rt -2.5 m

v,. a=Rg-m-X- a=V R.-x,.-

vi a R.m+v,,- j1



Let u derive a formula ror the volume of part of spherical segment JA

(Fig. 78). Volume V we present in the form of the sum of elementary volumes

Sy)dg. included between two planes parallel to the base of the segment and passing

through points with coordinates y and y + dy.

V Ri s(g)dy. (40.28)

Here k and n are distances from the center of the sphere to cube faces

a -n F--'n2 ' -arctg'

S-nVR2-n'- 2. (40.29)

Placing this value of S(y) in formlili (40.28) we obtain

Ag
Va(C rt nI I dy

L- '
-A f VRg-y'-;i dy=

h2

[y(R2 - ar, c-t-g 2ny VRC -n2 y2
3 ) -- 3 +

2 ny____

+ S- R! arctg n -

-- 2 • -- -• arcsin_ rt =
-n( 3 1IRg2 -n2 Ik

• nk
Rg V R,_ - n2 -k22n

-- n(R3-- arctg +
2nk it -

3 " (40.30)
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Analogously it is possible to derive a formula for the volume of K (Fig. 79).

arctg c_ _ + arag -+
3 kn nk

_ _.(1•€_ _)arctg £R -k'-n*____--_--
+ VR.S2-k + arctg, t -I)

-- n - + arctg - - +S2 1 3 k

k + ( R-- +- k i + k n)-1- k2 -+ t

_ !t _ _ _ _ _ _ _ _ 2 - 2

*(,-!! 3.Ct + at (10.1

For calculation of volumes of different parts X, and K in formulas (40.30) and

(40.31) one should substitute different values of parameters t, k and n in accordance

with Table 18.

It should be remembered that formulas (40.30) and (40.31) determine the smallest

volumes A or K cut from the sphere by two or three orthogonal intersecting planes

respectively. Below are given equations for different cases of intersection of

cube D by sphere e = g with indication of conditions during fulfillment of which

these equations have : .-aning. Numbers of the equations correspond to the numbers

in Fig. 77. It is assumed that xo>O and yo>O:

I

A V V,-V V,-v - 4m3,
M+ X,< ,. Vm--xr +lR,--O.5m)2> R,. (40.32)

M + go < RS. t(m-- yo)' -+(Rg - o.5;n)t >; R,.

2m j- 2R;•,
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V~ -V .V V -f - -A-2.

01+ xo<RE, V~m--x.)s+(R 8 =-0,5mY>,R~,

m + go> Re. Vfm - Yo)+ (Rs -0.5 m)'> Re, (40.33)

m - yo < K

2m + h >2R,,.
B. V .- Vt,- V.- Vk - Vt,+ V., 4ml.

m + zo <R,T V(m -xor + (R -0.5 m)l> Re,

10 4iO> Rg, V~m--g0 )'+(R,=-O.5mýi<ZRg, (140.34)

2in+ h >2Rs;

m +yA.>Re, J'(m -yc)2 +(Re - 05m)2 > Re., (40.35)

m-yo<Rg. 2m+h>2R.;

M?+.x@> R1, VI/7j2~+(RL=O,-5m)2<R

m + o> R5. V(-m-yo)+(,R-0,5m)2<Re. (4 0.36)

M+xo>Rs, V(-m-xo)2+(Rg-0.5lmr1<Rg. 2m+h>2R.,

01+g,)Rs, VCMz-yo)+(R,-0,5m)2<R,.

VM- XX) -+(m - Yo) 2 < Re. J/M-X0 '+(M-y' 1+(Re-O.Srm)2 >ý

Re; (410.37)

7- V. -VA, -V. -Vbc + V., + V. 2 + V3- V1, = W.

1+o> R5,g I/(m -x;)t+(m- Yo)2+(R 1 0,5rn) < Rt.
M+Y*>Rg. 2m+h>2R.; (14c38

A.V.-V#--V--Vb-V-+V 1-+V4+V,+V.-VkI=4m3,

m + x.0> Re. V1(m - x)2± (2.5m - Re ) 2 <Re,

m +yg>Rg. V(m - yo+(2,5m - Rg) 2> Rg

2mn+ I?<2R., I (m-X 2(- o)2 + (Ri - 0,5m)2 <Re:
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- Vw.- -V, - -..-. 4-V. -- L -LV -V -t/_-A-2

Mn + r. > R,, m + YO >Mx~+I R5,,LR-05) <

< Re (40.40)
2m + ft<2/?, J(m -Xo)z + (m - yo)'+(-2,5m - Rg,) > Rg,

S(rn - X) (.5i:T~t < Ril. I'(r - g)' + -(2,5m - R,)2 < I,;
B. V,-V. -V -Vt. _V,+;.I +V2+ V.3+ V,+

-VA - V# 4s
m~x + ,-R~. Vmx~±my)+( 5 O5nKR. (40.41)

m + go > Rs, 'I (m-xo)2+ (mW-'y 0)±+(2,5m-R,) R,
2,n + h < 21?,

V -rnx.,+ (2,5m R.-Ib< Rs. VFm -yoY +(2,5m -Rg > Rg
m +;-o> Rs. i'(m -xp÷(,..+ y)?÷+ (Rg -O,g5rn)<Rg;

2m+ft <2R,- [(-in + Yo) 1+ (RsO,5r)< Rg; (40.42)

+V.4 - 4, - V#&1 := 4ms,

2m + h < 21?,, j(m - )'+(2,5rn-.R,)2 2 Rr,

Ve-x, - rn) + -(2.5m - R,)' < RC, :"Fm -. U.)' + (2,r gm I?) R 1?,
2m A 2R, xI~m)+~myo)±(R5mI K<R,,; (40.44)

V(m- + yo)' + '(1 ,- O5rm), I R,, I(/-n) + (2.5,5m - Rg) < R,.

V(rn - YX) + ý(2,5,,,-,Re)' > Rg, V (X.- M)l +(M + y.) <CRg.

Y(r-M2(;+or(;=05M2> Rg. 2rn + ht < 2Rg. (40.45)
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A . V Val ,-V.7. + VM + V14 4M3,

M + F. > Re. /(x-- m)' + (m -- Yo)±+(Re -O...), < Re. (40.46)

2m + h < 2RS,. /(xe - m)' + (m - Yo)t + (2.5m -- Rg' < Re;

v - Y , - v,,, - v., V. + V,4 + V,3 = 4mW.

0x- m)' + (yo + i)' < Re. I/V(m + yo)' + (Re - 0,')" > Re.

2mn + h < 2R#. V(As-m)Y + (m - yo)'+(Rs - 0,5m)i < RR.

V(E0-m)'+ý(m- yg + (2;5m - R)r- < Re. (40.47)

B . V,*- Vs - Vas = 4In, ]/'(. + yo)3 + -(2,s5m - Rs?' - Re;

2m + h < 2R, V(x--m'± T(o-- m)'+ (R -- 0,5m)z < Re,

V'i;ým - f+ ý(,, - ýM); + (2,5m - R,,%t < Re. (40o. 48)

Calculation of conductivity g was done by the above mentioned formulas for

15 points on one eighth part of the area of the lower face of surPace of model

S. Results of calculation are given in Table 19 in which in scale are placed

points on a fourth part of the lower face and the value of conductivity in them

is shown. Near every point is shown the number of the equation which satisfies

conductivity in it. Calculation was carried out on digital computer "Promir.'"

as follows.

Table 19.

-7-8

n f,,, 1, ?J,,, - ron,

Itm

if-S

11f -8 If-R Fif-

1f-5 if-B #f-P SF-5 L-5

VAM g:%3i V,65V q qz42 4A
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An equation for conductivity g at the given point was Relected randomly. Part

of the members of the equation was transferred to the right part so that they took

the form

h, () =f2 (g).

Then, substituting different values of g, the ieft f,(g) and the right f2 (g) parts

of the equation were calculated, curves were plotted according to calculations and

their point of intersection found. Coordinate g of the point of intersection of

the curves were checked according to conditions for the given equation. If the

found value of g did not satisfy these conditions another equation was selected

and calculations carried out in this way until an equation for which the found

value of g satisfies all conditions is found.

Table 20.
V

0

-~1 -M -j 4~?fm g56m

441- ~ Y:141- R"w M am 9JF

VAPo--; =I. Rifl ;fm R Zf

1-* 1- 1-8 lA A'-

4 ?e,, a495,

Here the obtained results are directly applicable to the construction of

attenuators of space grid models. In this case instead of conductivity of holes to

nodes of the grid on its border it is necessary to join electrical conductivities
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proportional to those shown in the table. Short-circuited ends of all conductivities

will serve as an analog of a point at infinity. In Table 20 are given results of

calculation of distribution of conductivity g over surface S of a model. Region

D is a cube with side 2 m, surface S coincides with the surface of cube D.

Knowing g at point (x@ yo. Zo) of the model border it is easy to find the diameter

of hole d in this point If is selected the distance a between holes and thickness

I of boundary S

-4=a d V 3 (40.49)

or the distance a between holes if their diameter is selected

a = r . (40.-0)

§ 41. Simulation of Field of Stray
Currents in the Networks of
-lectrified Railroads anT

UdergrFound -•elines

Insulating cov~rIng. of Dines of underground constructions do not ensure

full protection of them from corrosion and destruction. Stray currents of electrified

railroads redouble the processes of destruction and rapidly lead to unfitness of

large sections of pipelines. For protection of metallic tundergrounr! constructions

from corrosion and dissolution by stray currents are developed effective protective

means namely cathode and drainage protection. However to this time no method has

been found for the calculation of safety devices with the help of which it would

have been possible tc determine their number, form and place of location in a

network of pipes.

Designing of devices of cathode and drainage shielding reduces to calculation

of a field of pcoto-ctive and stray currents in the ground surrounding the entire

network of underground construction. Mathematical formulation of this problem

was done by V. N. Ostapenko [191 but no analytic solution to it in general has

yet been found. Let us give mathematical expression to the problem.

Let us introduce the following designations:

U - electrical potential of field of current; Y1, V2, y3, V4. Vs - conductivity
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of pipeline, roadbed, insulating covering of pipes, insulation of rail, and ground

respectively.

The entire network of pipelines is placed in half-space x<O in parallel to

surface x=O (surface of earth) at a depth m from it. On surface x-O lies the

network of electrified railroads. The potential in the lower half-space satisfies

the equation

I -- in wall of pipes,
Y2-in rails of railroad.

Of Y-in insulation of pipes,
y•4-in insulation of rail,
ys- in ground

everywhere, besides the fixed points of connection of poles of sources of current

to the pipeline (with cathodic protection) and moving points of contact of a trolley

with rails (during travel of electric locomotives), in which potential has

peculiarities. On surface A - 0

.OU
- 0 (41.2)

everywhere with thý exception of ground points of poles of sources of current (with

cathodely shielding) and line of railroad. The intensity of processes of corrosion

and dissolution of metal of pipes is determined by difference potentials of the

pipeline and earth, in othar words, by the voltage on the insulating covering of

the pipe. From the essence of cathodic protection it follo~qs that this voltage

should be not less than a certain definite value and at the same time, from technical

considerations, should not be too large. The problem consists in detecting such a

distribution of cathode shielding devices and drainage cables for which the change

of voltage on the insulation of the pipes over the entire extent of the network

will be limited by the assigned limits. The number of safety devices besides

should be as small as possible.

The complexity and variety of forms of pipeline networks and railroad lines so

hamper analytic solution of the problem that it becomes practically impossible even

with the use of digital computers. However, solution of the problem nevertheless

can be obtained with the help of a model used to find voltage on insulating covering

of pipes of network. Sequentially modelling diverse variants of location of safety
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devices, it is possible to find an optimum.

The extent of networks of gas conduits is measured in cens, hundreds and even

thousands of kilometers. At the same time the value of diameters of the pipes does
£

not exceed one meter and the thickness of their insulation - one centimeter.

Such a ratio of dimensions gives rise to great difficulties when simulating the

field of stray and protective currents in a network of gas conduits. Actually the

dimensions of the model are desirably limited to a value of 2-3 m and at the same

time in model it is necessary to retain the actual ratio of length of network to

diameter of pipes and thickness of insulation cn them. Even if the extent of the

gas conduit model reaches several kilometers, the diameter of pipes on the model

will be measured in hundredth parts ol a millimeter and the thickness of insulation

in microns. To prepare such a model and to make the necessary measurements on

it is technically impracticable. This circumstance compels abandoning attempts

at straight simulation of the field and switching to a more complicated model using

characteristic peculiarities of the structure of the field investigated.

Let us consider a long rectilinear pipeline of radius R covere4 with a thin

layer of imperfect insulation and located at a depth m from the surface of the

Earth (X=O). Let us Join one pole of the source of e~ectromotive force to the

pipeline, the other pole we will ground at a great distance from it. Disregarding

potential drop along the pipe and considering the surface of the insulation

equipotential and the grounded pole infinitely remote, we find the field of current

in ground near the pipe.

Applying method of mirror images, we replace the investigated field by the

field of two parallel pipes of indentical potential in a uniform medium (ground).

The overall potential of the sought field is expressed thus [71:

e, i a

W (a) In )(113)

Here 10 is the current flowing through surface of pipe per unit length; -y is

the conductivity of ground

- ihV In + / 2 u+ (.41.4)
In M=m-- Vm-2-R 2  z2 + Vm'-- R 2

m+Vm'--I'



Q(z) is the function infinite-sheetly conformally mapping the entire plane with

rne exception of circular sections of pipes, onto an infinite band of width h and
translatIng the circuit of the upper pipe to upper limit of band v = h, the circuit

of the lower pipe to the lower bound of band v = 0. Here the point .t infinity

passes onto the band in a series of equidistant points with coordinates

i --- 2ak +-. (k - any integer)

2nh h(-.

m +-Vm-*•---- 2

Presenting function 0 in the form of a series we obtain

1 9 250 = 2 ' S9 4 sin fA - - sin 3 + q sin 5 4 1- . - j (4 1 .6 )

In

2A. 2 n M -V2-2R1
m +-l/m-'- R1

n z- VFm'--R
= Q-- z + V m'--R' I

" 2h--= m--|m --I• =z- -2 In

2 n+T Vm'-R2
e,(•,) = e, (•--=-e(,

--- - 2[q' co- n• 4- q' cos 34.j t-qT cos 5=. -ttt-..-l- ( .

Placing these values in formual (41.3), we have

+..lr)n --' ln & +i!

__i sin

__ ie,-2sn3-t esin5A j91si7- ,+.S21+q C.6A,+q2cos3:t,' -qcos5at,+q|,cos 7,•t+...

MI (Iq.. --I) --I
(-- 1)* 1 4 sin (2a-- 1) n1,

+ _ _]= 4- In 2" 
(41.8)

- >I,{.l---l---

Y, q 4 COS(2n-1) 41
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Considering values Of. m and R close to real (m 4R, R--O,5M#),we estimate the value

of q

_____V_ 4+q= e = 4- ,5 =-.4.I• • -: 1 (41.9)

Consequently, all members besides the first in expressions of sums, standing under

the sign of the logarithm, without loss of accuracy, may be disregarded

0) (it, •----(nt + n). (41.1o)

Let us designate b = I "n'-', then

-iarctg -Vy b' = c- id, (41.11)

C a In(X + b)9 + y'.d ard 2by
8 (x- b)' +" xS + ytg- b"

t9 at, tg (c -- id) = sin 2c - i sh 2dcos 2c-+ ch 2d

ch 2d - cos 2c - 2-

S ch 2d + c2c e siviý

Placing these expressbions in formula (41.10) we obtain

W Z A ( In 1/- 2 - Cos 2c+k+(4.2
2ay V, ch2d (+ c12)

• .sh 2d \
-iarctg- -h2 X +iI Xsin 2c) =-U(x.)+i'V(xg).

Consequently, the electrical potential equals:

XI ch2d--cos2c+)
"" , ch 2d + cos 2c + -"

Let us set potential at point (C, 0) equal to zero. We have

d (O,O)=Aac 0O aid (0,0 -L arctg -- = -a-; c(O, 0) 2 -- In 1 0.O
4h b2 4fh ' 8h
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U(o, 0)-= in Ch -- I +•-N- + 1
an

ch ±an- +

2A

Placing this value of the constant in formula (41.13), we obtain

(Ch2d-cos2c) (ch
(. )=4nyn (41,15)

(ch2d +cos2c) h a

We write the equation of the line of equal potential

clh 2d - cos2c
n ch 2d + cos 2c = const. (41.16)

According to the removal from the pipes, the form of lines of equal potential

approaches a circle. Indeed, considering Z> R and z>>m, from formula (41.10)

we oitain

Intgx• =In tg•In _ )

a ____ab ab
;-,=in tg in-- Ilng-- In

ab h

_In-a n -mr .
2h

Here

r= V'+s y = arctg-.S~x

More exactly the equation of equipotentials z>>R and z> m can be deriveo .zplpcing

the pipe by parallel charged axes with charges on them of +-0/2 and distance between

them 2n

U1l(x. y) 1 In V(x'+' + n- 2nxXx: + y'+n' + 2nx) + k.

4ny
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Con3idering UI(O,O) =O, we find

U 1(O, O)=--- -Inn'+k,=O. kj=- Inn,
4ny 8AY

.xy) In M___________

S2nxx2(41.17)U,(xA) Wn.'7. +I yo +4 7F- Yn~ ' + +' bzi• F2x"

Let us derive the equation of equipotential line passing through point

(0,ys). Potential at this point, calculated by the formula (41.15ý we designate U1 :

_ (ch •--arctg -2-by- -- I ch 0 + I

Ohal(c _ arctg +by I + )( an "S2ý , ;b,+ i-f-

We have

U,= 10ln(,, . NS
8- I:g y ÷n -- 2nx) (x ý t÷n + 2ýnx)"

We set

4 .'y

then

=(X+ + +y2 - 2x (X2 + y2 + j, + 2nx) =•

(x' + #2 + n2 - 2nxXx' + y2 + n2 + 2nx) = n~e--,=4 c.

We set x=vn. y=z, then

2'+ 2n2(v'2 _ )z + n(v'-- i)'--c = 0.

Hence

z = V/4v'4 c, -- n'(v+ 1),

1/7 /= ± n•Vv -,-vI ••.8

Considering x 0 (v 0). we find

yL = n



Fig. 8o.

hence

ni. n (41.19)

Placing this value of v in the equation of the equipotential line (41.18), we obtain

A 4x t-. -1 .

As can be seen from Fig. 80 the line of equal potential for yj> 20R differs very

little from a semicircle with its center on the surface of the ground.

Let us take the assumption made during derivation of formula (41,15) and apply

conditions which take place in reality, i.e., we will consider that travel along

the pipe the potential slowly changes, the grounded pole is located at a finite

but sufficiently great distance from the pipe and the pipeline consists of separate

rectilinear sections connected to one another at different angles. Here the picture

of the field near the pipe in a cross section normal to its axis is almost unchanged

although the value of potential at identical points of different sections will be

different. The picture of the field of various sections will be similar to each

other. Only the field near the points of break and branching of the pipeline will

be changed, however, even at these p'aces the form of the field will be practically

independent of position of remote poles and can be determined beforehand.

This characteristic peculiarity - independence of form of field near the pipe

from pcsition of remote sources - is used for construction of a model (35].
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Let us divide the Investigated field into two parts including: 1) pipeline,

insulation and nearby layer of ground bounded by a surface which is formed by the

family of lines of equal potential equally remote from the axis of the pipe:

2) the whole remaining ground. For each of these parts of the field we construct

own model, but, both models are combined in such a way as to immediately obtain a

solution to the problem. The final object of simulation is determination of voltage

on the insulation of the pipeline, in other words determination of potential

difference between two equipotential lines in every cross section of the rLpelinfe.

From this point of view the distribution of field intensity along lines of equal

potential are not of interest, therefore, consi'-:ing constancy of' form of field

near the pipe, it is possible to regard it as two-dimensional in coordinates

counted off along the axis of pipe (in units of length) and along any flow line

(in units of potential).

0 i pt - PZ

Fig. 81.

Let us find the connection between otential on the surface of the pipe U0

and potential on the surface of a separated layer of ground U1 (Fig. 81).

Considering the *.-Jrt1on of current flowing along the insulation and ground along

the axis of the pipe equal to zero, which is very close to the actual case, we

obtain

t + dZ) =g 0 (U. - U1 )dz.

Hence after differentiation and elimination of current i we obtain

M e = rO (U W O- U J. (4 1. 22),
dOJ

Here r 0 is the resistance of unit length of pipe; g c is the conductivity of
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Fig. 82.

insulation and separated layer of ground happening per unit length of pipe.

Precisely the same, with the same assumptions, will be the equation connecting

potential on rails of railroad with potential on surface of separated layer of

ground. Here by r 0 one should understand the resistance of a unit length of rail,

by go - the conductivity of the separated layer of ground happening per unit length

of rail.

Equation (4i.22) is similar to the equation of a long line and potentials

entering it can be modelled by the distribution of voltages in a recurrent circuit

containing the longitudinal resistances and transverse conductivities g.

In the remaining part of the ground the field is essentially a three-dimensional

potential which satisfies the laplace equation. It is expediently modeled by a

field of currant in a volumetric bath. Consequently, the model should contain two

main parts - a recurrent circuit and volumetric bath filled with a conducting

composition to replacing ground. Both parts have to be interccnnected in such a

manner so as to preserve values of potential on border of conne~tion of the models

corresponding to the outer surface of the separated layer of ground. Potential UI

on this surface is changed only along the axis of the pipe. Therefore, to preserve

its values it is necessary to make the surface metallic. In order to ensure a

change of potential along the axis of the pipe the metallic surface must be cut into

on small element of identical length with cross zections normal to the axis and to

insulate the metallic element from each other with thin insulating separators

(Fig. 82). To each element of length I is coupled a conductivity g=go( of the

recurrent circuit.

We have seen that a line of equal potential remote from axis of pipe by a

distance greater than 20R is close to a semicircle. A line of equal potential near

a railroad has the same form. Therefore element for connection of both parts of

the model are expediently prepared from segments of metallic tube. The radius

[ A,
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Fig. 83.

of the semicircles , should be selected such that in the scale of the model the radius

of tubes of element be not less than 3-4 mm. In the bath the tubes are emersed

in conducting composition to one half of their diameter.

In place of branching of pipes, the forr of element can be found replacing the

pipeline and its mirror image in the surface of the ground by two charged filaments

coinciding with axes oz and oy (Fig. 83). At great distances from the pipes such

replacement is permissible. The potential of the field of intersecting filaments

equals:

VI(x,y, z) .. In '/'(W+ ±Xx + 0) + q1. (41.23)

The equation of the surface of equal potential is

(W + OW+('+z)= C. (41.24)

Constant c we find from the condition that point (0, Yl, 1) belongs this surface

C =42

Consequently, the equation of the surface will be

Y= -2 or z= P ,2.. (41.25)

The form of a surface plotted according to this equation is shown in Fig. 33.

The distribution of voltage on the insulation of the pipes which is of interest

to us will be modelled by the distribution of voltage on conductivities g of the

recurrent circuit. Each of conductivities g replaces the joint conductivity of

insulation and ground present on a section of pipe of length i. The value cf

is defined thus:

go + gm, 11e = e,-S



Here

9., = nRly., (41•. 27 )

9, is the conductivity of insulation present on length I of a pipe of radius R;

Y = 2,y8  (41.28)

ch(-j aro )y2

ch ajarctg jC- IJ2h_2_-bt)

gr is the conductivity of a separated layer of ground; Y,, is the conductivity of

a unit of an area of insulation.

Knowing the value of conductivities g. and gr' it is easy to find the voltage

on a section of insulation of the pipe a, by the formula

go,= • 9M u, (41.29)
gm + g"

where u is the voltage on conductivity g of a link of the recurrent circuit.
If a gas conduit consists of two closely located pipes electrically

interconnected, the form of element will be the same as for a single pipe but in

this case the conductivity of the separated laver of ground cannot be calculated

by the formula (41.28). The value of conductivity is most easily found by simulation

on a model of resistance paper (Fig.

84). The model constitutes a circle of

? + radius y,, cut from resistance paper.

a L Along its circumference is connected

a copper wire ring. To sections

. corresponding to sections of pipes

and their mirror images on the surface

of the Earth are soldered copper disks

of radius R which are interconnected.

Fig. 84. The model is connected in a dc circuit

in series with a rectangular band measuring L x H cut from the same paper as was

the circle and the voltage between contacts of the nmodel UG and line Uw are



measured. Conductivity is calculated by the formula

en - t u--£(Ci.30)

Replacement of the separated layer of ground and insulation of the pipes by

conductivities of a recurrent circuit permits practically a 100 fold decrease in

scale of simulation, however for too large an extent of the pipeline network the

entire field cannot be modelled, !-mediately. It is necessary to model the field

by sections. The model constitutes volumetric bath filled with a conducting

composition with adjoint recurrent circuits. So that the field of current in the

model will be similar to the field of current in the modelled section of the network

it is necessary on the borders of the modelled section to assign values of potential

proportional to those occurring in the actual field. These values are not beforehand

known and can be determined only by solving the entire problem. Tn order to avoid

this uncertainty it was necessary to prepare the model in such a manner so that

during simulation in it any section is considered to always influence the entire

remaining pipeline and railroad network with the ground surrounding it. This can

be achieved with the help of a model of an element of unlimited space. :he depth

of laying of the pipes in the ground is negligeably small as compared to the

dinensions of the modelled sections of the network. For planning only the voltage

on the insulation of the pipes is of interest. Consequently, it is important to

ensure conformity of the field of current in the model and object only on the

surface of the conducting composition of the model. Therefore as an element of

unlimited space it is expedient to select a square.

The metallic housing of a model of an element of unlimited space is equivalent

to an infinitely remote surface of zero potential. Replacing the branches of

pipeline and railroad network extending beyond the limits of the modelled section

by equivalent resistances -onnecting the ends of the chain diagram with the metallic

housing of the model we will consider thereby an influence of all remaining parts

of the network on the field of current from •ources located within the limits of

area of the given section. The value of resistances equivalent to branches of the

network exceeding the limits of the modelled section can be measured colleeing for

this on the model a circuit of substitution of each of the branches.



If

The field in the part of interest to us, that is near to the surface of the

pipes, is determined by the current flowing through the insulation of the pipes.

Sources of opposite sign located in a neighboiing section are removed to

comparatively great distances and their influence on the value of voltage on the

insulation of pipes of a given cross section is the same as if they were infinitely

distant. Therefore, for simulation of a field of sources located in a neighboring

section it is sufficient on the ends of the circuits of substitution of the branches

of a pipeline and a railroad network, at the intersections with these branches of

the border between sections, to set the value of currents, equal to earlier occurring

resistances, equivalent to the same branches during simulation of a field in a cross

section with sources. Connecting sources of current with one pole to the metallic

housing, the second to the ends of the circuits of substitution of branches,

serving as a continuation of branches of the section with sources and setting the

necessary values of currents, we ensure thereby boundary conditions close reality

[323.

In such a way it is possible to model by sections the field of the entire

nipeline net created by sources located in only one section. Modelling in series

a field created by sources of each of the sections separately, and superimposing

the results of simulation, we find the resultant field during simultaneous action

of all sources.

§ 42. Model for Calculating Electroprotection
of Underground Constructions

from Corrosion

In preceding paragraph we clarified the possibility of simulaticri of a field

of stray currents in a network of underground pipelines and railroads and showed

that the modelling device must consist of the model of an element of unlimited

space having the form of a section of a plane, and a set of chain circuits with

sources of current. In . 37 is examined a model with a zero mean value of potential

of distortion on the section of free surface of the conducting com osition. Let

us give consideration in favor of application of it for simulation if a field of

stray currents. During simulation the ends of branches of chain circuits replacing

sections of branches of the pipeline network exceeding the limits of the given section

are joined to the metallic housing of the model through resistonces. The current



in these resistances are measured and during subsequent simulation of the field in

neighboring sections the measured value of it is set in continuations of the

same branches. This current basically also determines the intensity of the field

in neighboring sections. The value of current is proportional to the potential

difference between the end of the branch of the chain circuit and the housing of

model. Inasmuch as the potential of the model housing is equal to zero, the value

of current is proportional to the potential of the end of the branch.

We saw that it is impossible to destroy completely the distortion inserted

by the wall of the model onto the field. The field of the sources is partially

reflected from the wall of the model and affects the value of potential of the

branches of the chain circuits replacing the pipelines. This influence will be

reflected in the value of current in the branches and will lead to error during

simulaticn. Properties of model have to be such that this error is as small as

possible.

The reflected field in the model can be regarded as a field of sources

distributed over its wall. Let us estimate the influence of this field on the

value of potential of a branch of the chain circuit replacing a metallic pipeline.

Let us assime tnat in the field of sources is introduced an uncharged conductor

(pipeline). Free charges migrate to the surface of the coridictor and create their

own field. Inside the conductor it is equal to and opposite in sign to the external

field of the sources and th9 potential of the resultant field there is constant.

Outside the conductor the field of char~es induced on it is similar to the field of

a dipole since the total induced charge of the co:nouctor is equal to zero. The

zero equipotential surface of this field necessarily will pass inside the conductor

and will dissect it into two approximately !Jentical parts. Inside the conductor

it coincides with one of the equipotentials of the external field of sources,

outside the conductor it goes to infinity. Inasmuch as the resultant potential is

equal to the sum of potentials of the field of sources and the field of charges

induced on the conductor, the constant value of potential of tne conductor U = C

will be equal to that value of field potential of external sources which it takes

inside the conductor on the section of the surface of zero potential of the

field of induced charges. As was shown by G. A. Grirberga potential induced on a

1G. A. Grinberg, "Izbrannyye voprosy matematichesko3f teoril elektricheskiKh t
magnitnykh yavleniy, Izd-vo AN SSSR, 1948.
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long thin straight wire introduces in an arbitrary external field, is very close

to the mean value of potential of this external field on the length of tht wire.
In our case tht! modeLled pipeline constitutes a totality of long thin conductors
locaZed on the curface oiý the conducting composition of the model. The error
introduced "y tihe wall of the model in the value of potential of the circuits of
substitution G1f the Pipeline will also be close to the mean value of potential of
distortion in the volume occupied by the pipeline. Therefore, it is expedient to
study such a model in whinh the mean value of potenttal of distortion will equal
zero. The model examined in § 37 possesses, besides this, one more valuable property,
inamely: a smnll value of potential of distortion in the entire region.

During design of electroshielding of pipelines the field only on tne surface
of the conducting composition of model is of interest, therefore, it is possible to
apply a 3olid medium for simulation of uhc field. A solid solution of gelatin in
glyce-'ne ýs most suitable. The solution ia poured into a tank in the liquid
state and it fills all openings in the walls. After that it is cooled and its

surface leveled.

The ltast value of potential of distortiun is

attained with a spherical surface of model 'all.
/ However, to prepare such a surface is difficult and

can be replaced .it, the surface of an octahedral

truncated pyramid embracing a spherical segment (Fig.

M 85) The condictivity of noles in the wall of the model

is determined by the formula (37.3). As region D it

Fig. 85. is expedient to take a square (Fig. 68). Here integrals
in formula (37.3) are expressed in teim= of elementary

functions. Calculation of conductivity g can be performed on a digital computer

progr&med for calculation of multiple integrals. Results of calculation of

conductivily g for the model shown in Fig. 85 are giver. in Table 21.

The second part of tne model - a set of chain circuits and scurces of current
is composed of wire adjustable resistances and assembled on a special frame.
Values of conductivities and resistances replacing joint conductivity of tne
insulation and separated layer of ground, and che longitudinal resistance of the

pipes, are set in a selected c.al, depending on the ratio of conductivities of
ground and the conducting composition of the mode!.
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Table 21. __________

W~ ~ aV SMgg mC
a-.a3 . ffia g pI

In accordarce with the plan of pipeline and railroaa networks on the surface

of the condu~cting composition of the modrl, semicircular i-rooves .-e -t with a

specis.. cutt-er In which are fused preliminarily heated tubular ~e

themr 'ý -hin : nul-finc secrarators. Thr tc P.e rý ~ o~~ . c t-.-

chain circuits. Toward the end of a brtinch of the chain circuit, ~.replaces

it621f a part of a branch of the pipeline or railroad intersecting the *tcrder r

the modelled section, a resistance is connected equivalent to the part of the

branch not Included in the model.

Nodes of the chain circuit replacing a railroad line are joined to the contacts

of a step switcl-at -'he input of whicn' a source-' c'f curr-nt !:- inýu ; -rave- of nr



electric locomotive along the line Is imitated by series switching of contacts of

the stepping switch.

The problem at hand is solv,'d thus:

A source of current, one end of which is connected to the input of a stepping

switch, is connected by the other end to the node of the circuit of substitution

of the railroad corresponding to the point of connection of a traction substation.

Current is set in the source in a selected scale proportional to the current

consumed by the electric train. After that the stepping switch is activated and the

voltage u on conductivity g of a link of the chain circuit replacing a pipeline

with insulation and a layer of grouni and the value of currents in resistances

connected to the housing of the model are measured. Knowing the values of

conductivity g,.p and gx3 (41.27), (41.28), voltage drops on the corresponding section

of insulation u,, are calculated by the formula (141.29). Making measurements on

all conductivities and calculating the voltage on the insulation, distribution

curves of voltage along branches of the pipeline are traced. The same is done for

all neighboring sections of the pipeline network however in this case sources of

current are connected to beginnings of tne branches of the pipeline and railroad

networks which are a continuation of branches of the basic section and to tne

housing of the model and with these sources is provided a current of the same value

as was measured on the first model in corresponding resistances. The stepping

switzh in this case is not included but 'he current in the sources connected to the

beginnings of the branches change in tnt same stepwise fashion as in the first model

during operation of the stepping switch.

Performing similar operations as many times as there are sections of the

modelled pipeline network, we obtain a -eries of distribution curves of voltage on

the insulation of the pipeline durin.g action of sources of each of the sections

separately. Summing these curves we obtain resultant distribution curves of voltage

on the insulation of the pipes of the network. The form of the curves and value

of their ordinates will permit finding sections of the pipeline subjected to

destruction and to select a device for their protection. Placing stations of

cathodic protection and drainages along the pineline we go on to simulation of the

field taking into account the influence of safety devices. Stations of cathode

protection on the model will correspond to sources of -urrent connected to nodes of



II

the chain circuit of substitution of the pipeline, and the point of the surface of

conducting composition of the model corresponding to the grounding point. Drainages

are modelled by connecting wires of definite resistance between nodes of the chain

circuits of substitution of the pipeline and railroad. Having made all necessary

co-nections on the model we begin to take new measurements and plot curves of

distribution of voltage on the insulation. ITf obtained results are unsatisfactory,

a new location for the safety devices is selected and modeling is repeated until

the optimum variant of shielding is selected.
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U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block Italic Transliteration Block Italic Transliteration
A a A a A, a P p Pp R, r
B 6 A 6 B, b C c Cc S, s
B x B # V, v T T m M T, t
r r r1 G, g Y y Y y U, u
)• D D, d 0 0# F, f
E o E a Ye, ye; F; e X x X x Kh, kh
X a•c W 2X Zh, zh U U JV Ts, ts
3 , 3 S Z, Z 4 , V Ch, ch

MILIu I, i 1W ,, Sh, sh
SR D a Y, y UI L l X Iq Shch, shch

K X K x K, k 1, - Z % "
ii I i A L, 1 b( Vai Y, y

M X M N M, M b & 1
H X H M N, n 9 a 3 E, e

o o 0 0 0, 0 I01 10O yu,y
7 n 7 x P, p Rn X a Ya, ya

R ye initially, after vowels, and after 1, b; e elsewhere.
Wen written as t in Russian, transliterate as ys or 9.
The use of diacritical marks is preferred, but such marks
may be omitted when expediency dictates.
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FOLL0WING ARE THE CORRESPONDING RUSSIAN AND ENGLISH

DESIGNATIONS OF THE TRIGONOMETRIC FUNCTIONS

Russian English

sin sin
003 Co.

tg tan
ctg cot

cosec Coe

sh Binh
ch cosh
th tanh
eth coth
8ch soch
cach cach

arc sin sin-
are Co0 Co0o-
arc tg tan-1
arc ctg cot-,

arc sec Bec-I
arc CooaO C8C-I

arc sh sinh"I

arc ch cosh 1l
arc th taneh-
arc cth coth-I
arc sch sech4-
arc each c&ch-l

rot curl
ig log

FTD-MT-66-86 300



DISTRIBUTION LIST

Orga iza i nNr.C ys . Organization Nr. Cy s .

AIR 1ORCEOTHER DOD AGENCIES
Hq USAF (AFNIEBA) 1 DDC 2AFINIEBB 2Ado (ACDEL-7) 2 1SRURand (alif)Army Map Service1ORan ( CRali) 1 M4al Intel Dir RDSTIOAFR (CRRYA) 2 U .S. Army (FSTC)5A.FcL (CRxL) 1p Army Security Agency 5AR AR)W,AFB 2 H{arry Diamoni Lab1SAC (DISC) 1 NOTS China LakeIHq AFSC (sCFr) 1 PAC Msql Range1

AFETR (ETW) 11
AP4L (WLF) I
Ai4Dfl (AMFR) 2
ASD (ASFS-2) 9ESD (ESY) 2ESDDP (1 OTHER GGVERIý.MENT AGE14CIESESDT (1)

RADC (EMY) 2 AEC (Term)RAEMC ()AEC ('Wash)2
RAEMI ()NAFEC

SAMSO (SMFA) 5NAA(TST
FTDNAA(TS)

TDBDP-2 2
TDBTL 2
TDBXP 3

ATD (2)
PHS (1)TDBXT1 DISTRIBUTIONR TO BE MADE By

TDCAR1 1 DIA (DIACO-3) 1TCTE 1 3 DIAAP-1c1 (1) 8
OTE(1 DIA Ap- 1H 2 (1

TDDEI 1DIAST-A (1)
TDD PHE 1 DIAST-SC (1)TD PH )3 U.S. Navy (oNR) (1)PH (1) 0P922F2 (1)

(2)E CIA (SD) (5)TDEE/ NSA (CREF/CDB) (6)
EEB,/K ()

TDET 2 AIR F RCE ( Ontd
ETTI/I (1

ETT2,/M TDF-SF/R1TDFC 3TDGSI
FrCC/G (1) Det #4 (trD)I

FTD-MT-66 -86


